
The Calculation of Spherical Bessel Functions
and Coulomb Functions

A.R.Barnett

Physics Department, University of Manchester, Manchester, M13 9PL, England
and Physics Department, University of Auckland, Auckland, New Zealand

Abstract

An account is given of the Steed algorithm for calculating Coulomb functions
and, as a special case, both spherical Bessel and Riccati–Bessel functions. These
functions are needed for boundary-condition matching in scattering problems in
Atomic and Nuclear physics. Central to the technique is the evaluation of con-
tinued fractions and for this calculation Lentz’s forward method (modified by
Thompson) is recommended. The FORTRAN 77 programs SBESJY, RICBES
and COUL90 are presented and described, and some test cases are given. In
each program the algorithm returns both the regular and irregular functions
as well as their derivatives. The programs are written for real arguments and
real orders; references guide the reader to more general codes.

2 A.R.Barnett

1. Introduction

Coulomb wave functions arise in many problems of physical interest when
charged particles scatter from each other. Such scattering is characterised by
a relative angular momentum Lh̄ (with L a non-negative integer) and by a
Sommerfeld parameter η = Zα/β which gives the strength of the Coulomb in-
teraction. The product of the particle charges is Ze2, the fine-structure constant
α = e2/h̄c(4πǫ0), and βc is the relative velocity of the particles. With charges
of opposite sign, as is frequently the case in Atomic physics, then η is negative,
while in Nuclear physics problems generally the charges have the same sign
and η is positive. Positron scattering from a nucleus will also have η > 0. For
the scattering of a neutral particle (e.g. a neutron) or by a neutral target then
the parameter η is zero, resulting in Riccati–Bessel functions in which only the
angular momentum effects appear. These functions differ only in a minor way
from spherical Bessel functions and both can properly be regarded as special
cases of the Coulomb functions.

This review is mainly concerned with the Atomic physics area and thus
primarily with the cases where η is not positive. In atomic units the relative
energy E, in Rydberg units, is given by E = E(eV)/13.605 eV . Then E = k2

and η = −Z/k. Typical energies are between 0.5 − 200 eV , with correspond-
ing k-values from (0.2 − 3.8)a−1

0 , and η-values between −5.2 and −0.26. With
matching radii of r = (10 − 200)a0 then the dimensionless variable x = kr
lies in the range 1 − 1000. The angular momentum quantum number L will
vary from 0 to perhaps 50, while Bessel functions of orders up to 150 may be
required. As an example, the parameters for the calculations in Chapter 1 of
this book, with energy 54.5 eV are k = 2.00, η = −0.50 (0.50) for electron
(positron) scattering off hydrogen ions, and η = 0 for either particle scattering
from neutral hydrogen.

The second-order differential equation satisfied by the Coulomb functions
is,

w′′(x) + [1 − 2η/x− L(L+ 1)/x2]w(x) = 0 (1)

(where the primes indicate differentiation with respect to x) and it has two lin-
early independent solutions. They are chosen to be the regular solution FL(η, x)
which is zero at x = 0, and the irregular solution GL(η, x) which is infinite at
x = 0. See also refs1,2,3,9,10 for alternative forms of (1).

The ‘turning point’ for the Lth partial wave occurs at a value of x

xL = η + (η2 + L2 + L)1/2 (2)

which is where the bracket [...] is zero in (1); it is also the first point of inflexion
for the functions. For negative η, say η = −h, the L = 0 turning point is at
the origin, x0 = 0, and for other L-values xL is always less than L; it lies
between L− h (for small h) and 1/2L(L/h) (for small L). It will transpire that
the computational task is easier when x > xL, so that functions with negative
η are obtained more straightforwardly than when η is positive.

The Calculation of Spherical Bessel Functions and Coulomb Functions 3

For values of x which are greater than xL the functions take on an oscillatory
character, although the ‘period’ slowly changes. Examples of the functions are
shown in Fig.1. For η > 0 the regular function magnitude is greater than
unity, and it slowly decreases towards unity as x grows larger. When η < 0 the
magnitude of FL(η, x) is less than unity and it increases steadily for larger x.
In the asymptotic region as x→ ∞ they become circular with F → sin θL and
G→ cos θL , where θL is the asymptotic phase given by

θL = x − ηln(2x) − 1/2Lπ + argΓ (L+ 1 + iη) (3)

and in the case when η = 0 this phase becomes linear in x:

θL = x − 1/2Lπ

An additional phase of 1/2π will be required for spherical Bessel functions be-
cause of a different definition which is given in eqn(8).

This article deals with solutions to the Coulomb scattering problem in which
the particles have a positive relative energy. Curtis1 published a detailed dis-
cussion for η < 0 in 1964 for L = 0, 1, 2 and for functions closely related to F
and G, for use in electron scattering calculations. More recent work for electron
scattering is that of Seaton2 and of Bell and Scott3; Seaton dealing with posi-
tive, negative and zero energies, while Bell and Scott treated negative energies.
The work of Curtis for positive energy was verified numerically by Barnett4

in 1974. Bardin et al.5 published a comprehensive suite of programs in 1972
containing codes for all real η and x. All of these methods involve some ap-
propriate series expansion, either in powers of x, or asymptotically in powers
of x−1. Both F and G are calculated separately, as are their x-derivatives. A
new approach to the calculation of Coulomb functions was developed by Steed
in the late 1960s and was published by Barnett et al.6 in 1974. The functions
and their derivatives are calculated together in an interdependent way, and two
continued fractions are used (§6). Virtually all previous work, especially that
of Bardin et al.,5 was verified and in some cases extended in this paper. A
detailed description of this algorithm and a careful comparison with other ap-
proaches was given by Barnett7 in 1982. The original program6 RCWFN was
superseded by a more comprehensive version,4 called COULFG, which includes
the calculation of both Bessel and spherical Bessel functions (of the first and
second kind i.e. jn(x), yn(x)) as well as the Coulomb functions. The version
presented here in §7, COUL90, has been further improved in one important
respect which, however, does not affect the algorithm, the range of the calcula-
tions or the results already given, both in ref.4 and the earlier work. Comments
on the methods of COULFG have been made by Nesbet8 with suggestions for
improvements for both Coulomb–function calculations when x < xL=0, and
especially for spherical Bessel functions.

Solutions for negative energy (including the bound states) are given by
Whittaker functions and, for both η < 0 and η > 0, can be obtained by using
the recent program COULN of Noble and Thompson9 which is well suited to
electron scattering.

4 A.R.Barnett

The algorithm of COULFG is not restricted to integer L-values, as refs4,10

demonstrate, and it can hence be used for scattering solutions to relativistic
problems for which the Klein–Gordon equation or the Dirac equation are ap-
propriate. Here an equivalent non-integer L is required; for small L-values this
can be imaginary. Extensions of the concepts underlying the calculations to
complex arguments are presented in the program COULCC, which was pub-
lished in 1985 by Thompson and Barnett.11 The range of each of the three
variables has been extended into the complex plane. The program has been re-
cently been incorporated into the IMSL SFUN library. A description has been
given in ref.12 of the various approaches required in the different parameter re-
gions, with references to earlier and more restricted work. The code COULCC
also computes Bessel functions with complex arguments and order; however,
for real order, BESSCC for modified Bessel functions is a more efficient code,11

which incorporates similar principles.

2. Spherical Bessel Functions

Spherical Bessel functions, and their close relatives the Riccati–Bessel func-
tions, are required frequently in Atomic physics calculations and in many other
branches of Physics, for example in the calculations of Mie scattering in Op-
tics. In Chapter 1 of this book they emerge as the asymptotic wavefunctions for
the problem of charged particles scattering from neutral atoms or molecules.
Similarly, they are required for the description of the scattering of neutrons
from nuclei. Despite this they rather tend to be the poor relations of the
numerical analysis world. They are covered in the encylopaedic Handbook of
Abramowitz and Stegun13 but they are not mentioned, for example, in the Nu-

merical Recipes,14 chapter 6 on Special Functions, where Bessel functions (i.e.
with cylindrical symmetry) are treated, and few, if any, large-scale libraries
(such as NAG, IMSL etc.) have suitable subroutines. The reason is simply
that all orders are expressible as sums of polynomials in x−1 multiplied by
sinx and (− cosx), and recurrence relations connect consecutive orders. The
computational task appears trivial. Nevertheless there are difficulties, shared
with the evaluation of more general Bessel functions and Coulomb functions,
which stem directly from the relevant differential equation. A useful discussion,
intended for the physicist exploring numerical analysis, of some of these dif-
ficulties in the case of cylindrical Bessel functions, is that of Koonin15(§4.1),
which also contains the details of an fixed-accuracy program to evalute them.
Similarly, Numerical Recipes by Press et al.14 contains an excellent coverage of
the counter-intuitive aspects of the evaluation of special functions, of difference
and of differential equations, as well as numerous programs.

Very recently however, Press and Teukolsky, two of the authors of Numerical

Recipes, have published in their regular column34 programs for Jν(x), Yν(x)
for real cylindrical Bessel functions and for the modified Iν(x), Kν(x) Bessels

The Calculation of Spherical Bessel Functions and Coulomb Functions 5

of real argument x and real order ν. These programs directly adopt Steed’s
method and the extensions and the techniques given in the complex-argument,
real-order code BESSCC11 of Thompson and Barnett. The Press-Teukolsky
codes are thus more suitable for real arguments and are faster since they are
less general. As examples of their use, calling programs are provided to find Airy
functions and spherical Bessel functions. This route makes the spherical Bessels
conceptually a special case of the usual Bessel function; it is also evident23 that
both are special cases of the Coulomb functions. No test cases are given, nor
are ranges specified on the parameters, but in general the same conclusions as
those presented in this article will apply.

Two programs have been recently published for the specific calculation of
spherical Bessel functions, by Gillman and Fiebig16 and by Lentz.26 They are
discussed at the end of §5.

For spherical Bessel functions, with solutions jn(x) and yn(x), the differen-
tial equation is:

w′′ + 2w′/x + [1 − n(n+ 1)/x2]w = 0 (4)

In this equation (see ref.13 eqn 10.1.1) x is a real variable while n is an integer
which is positive, negative or zero and which will be identified with the non-
negative angular momentum. Many of the properties of jn and yn follow directly
from their identification as Coulomb functions with η = 0, as is done below
through eqn(11). The results are

jn(x) = x−1Fn(0, x) yn(x) = −x−1Gn(0, x) (5)

¿From this and the properties of F and G we immediately deduce that j and
y will display an oscillatory nature for x-values larger than

√

(n2 + n), their
magnitude will decrease as x−1 for these larger x-values, and that y will diverge
towards −∞ as x approaches zero. The first two orders of the spherical Bessel
functions are:

j0(x) = x−1 sinx y0(x) = − x−1 cosx

j1(x) = x−2 sinx − x−1 cosx y1(x) = −x−2 cosx − x−1 sinx
(6)

and recurrence relations (§3) link sets of three consecutive orders. The deriva-
tives j′0(x), y

′
0(x) follow from (6).

The two solutions jn and yn are called the regular solution and the irregular

solution respectively. This describes their behaviour at the origin of x where the
irregular solution diverges to −∞ as −(2n−1)!!x−(n+1) and the regular one goes
to zero as xn/(2n + 1)!!, (and with j0(0) = 1). The irregular solution, yn(x),
is called the spherical Neumann function and occasionally given the symbol
nn(x). The following linear combinations are the spherical Hankel functions,

h(1)
n (x) = jn(x) + iyn(x)

h(2)
n (x) = jn(x) − iyn(x)

(7)

6 A.R.Barnett

As x becomes large the equations of ref.13 (9.2.1, 9.2.17 and those following
10.1.26) show that

jn(x) → x−1 cos(x− 1/2nπ − 1/2π) = x−1 sin(θn − 1/2π), and

yn(x) → x−1 sin(x− 1/2nπ − 1/2π) = −x−1 cos(θn − 1/2π)
(8)

This difference in phase definition (the additional 1/2π which interchanges the
role of sine and cosine in (8)) is carried over to the equivalents of the Hankel
functions for Coulomb scattering. For this Coulomb case the expression for the
outgoing wave is chosen to be

H+
L (η, x) = GL(η, x) + iFL(η, x) → exp(iθL) as x→ ∞ (9)

and similarly for H− the incoming wave. For η = 0 the relations are

h(1)(x) = −(i/x)H+(0, x) h(2)(x) = (i/x)H−(0, x) (10)

with the 1/2π phase difference remaining. The H± scattering functions must

not be confused with the Hankel functions for cylindrical Bessels, H
(1)
n and

H
(2)
n (see ref.13 eqn 9.1.3, 9.1.4, 9.1.6), which are analogous to (7).
To obtain the Riccati–Bessel functions we transform (4), by removing the

first-derivative term, into

w′′ + [1 − n(n+ 1)/x2]w = 0 (11)

whose solutions (ref.13 §10.3) are xjn(x) and xyn(x). No special symbol has
been given to them in the mathematical literature although, for complex argu-
ment z, a consistent notation is used17,18,19 for Mie scattering:

ψn(z) = zjn(z)

χn(z) = −zyn(z)

ζn(z) = ψn(z) + iχn(z)

(12)

The Riccati–Bessel properties are briefly treated in the Handbook13[§10.3];
here, however, χn = +zyn. For orders n = 0, 1 we then have, adopting ref.13

xjn(x) = sinx xy0(x) = − cosx

xj1(x) = x−1 sinx − cosx xy1(x) = −x−1 cosx − sinx
(13)

On comparison of (11) with (1) it is evident that the Riccati–Bessel functions
are the same as the Coulomb functions with η = 0, while (8) and (9) show
that the sign of the irregular function chin is reversed relative to GL(0, x). The
Riccati–Bessel functions thus behave like sin θn and (− cos θn) as x becomes
large, where the asymptotic phase, θn, is given by (3). Alternatively this can
be written cos(θn − 1/2π) , sin(θn − 1/2π) as in (8). The subroutine RICBES
retains the Handbook definitions in which the Riccati–Bessel is the argument x
times the corresponding spherical Bessel function.

The Calculation of Spherical Bessel Functions and Coulomb Functions 7

3. Recurrence Relations for Spherical Bessel Functions

Each of the four spherical Bessel functions jn, yn, h
(1)
n , h

(2)
n obeys recurrence

relations [ref.13 10.1.19 – 10.1.22] which connect the functions of order (n− 1),
n and (n + 1). Using gn to represent any of these four functions the relations
are:

gn−1 − 2n+ 1

x
gn + gn+1 = 0 (14)

and

ngn−1 − 2n+ 1

x
g′n − (n+ 1)gn+1 = 0. (15)

These can be rewritten in a form which is suitable for downward recurrence,
connecting two successive orders and a derivative,

gn−1 = Sn+1gn + g′n (16)

g′n−1 = Sn−1gn−1 − gn (17)

in which Sn = n/x. The equivalent expressions for upward recurrence are
equations (17) and (16) rearranged:

gn+1 = Sngn − g′n (18)

and

g′n+1 = gn − Sn+2gn+1 (19)

The recurrence relations (14) – (17) are an alternative way of expressing the
differential equation (4) as difference equations.

It is well known (e.g. ref.14 §5.4, ref.15 §4.1, and ref.8 §3) that a recurrence
relation is numerically unstable in the direction in which the function is de-
creasing. Successive values are computed as small differences between nearly
equal terms and all accuracy is soon lost. This occurs for the regular function
jL(x) once L > x for any fixed value of x: jL(x) decreases monotonically as a
function of L , so that upward recurrence in n of jn(x) is unstable. Conversely,
since the irregular function yL(x) increases as L increases, once L > x, upward
recurrence is stable. Thus for L > x we must use downward recurrence in n to
calculate the values of jn(x) (n = L,L − 1, ..., 3, 2, 1, 0); similarly upward re-

currence must be used for yn(x). In the region where L < x then the functions
have an oscillatory character and recurrence in both directions is stable.

Hence, to compute both jn(x) and j′n(x) for all orders from 0–L by using
(16) and (17) we need jL(x) and j′L(x) , or their ratio, for the maximum n = L
and to find the smaller n-values by downward recurrence, normalising at j0(x)
with (6). On the other hand, starting with y0(x) and y′0(x) from (6), the upward
recurrence equations (18), (19) will yield stable values for the irregular functions
and their derivatives for each value of the order.

¿From (18), which is satisfied by jn(x), we see that the logarithmic deriva-
tive is given by

8 A.R.Barnett

j′n
jn

= Sn − jn+1

jn
(20)

and from (14) it is easy to derive a continued fraction for the ratio of successive
orders:

jn+1

jn
=

1

(2n+ 3)/x−
1

(2n+ 5)/x−
1

(2n+ 7)/x − ...
(21)

The coefficents in the denominators are Sk +Sk+1 ≡ Tk for k starting at n+1.
The equation is implicit in [10, 9.1.73 and 10.1.1]; it was derived (for Coulomb
functions) as eqn(2.19) of ref.7 and by a different method in ref.6 (It was quoted
erroneously in ref.23 in equations (37), (38) and (39) – in each case the first
term should be dropped.) A most important point is that (21) applies only

to the regular solution. It is not apparent from the derivation that the formula
does not hold for the irregular functions yn or hn, even though they, too, satisfy

all the recurrence relations. The explanation of this remarkable result, and an
indication of its generality, appears in Gautschi24 and in refs20,22: only the
minimal (i.e. regular) solution has the property (21). Also, combining (20) and
(21) we find,

f ≡ j′n
jn

= Sn − 1

Tn+1 −
1

Tn+2−
...

1

Tk − ...
(22)

The numerical evaluation of the continued fraction f uses the fact that even-
tually the denominator Tk = (2k + 1)/x will become large enough so that the
value of f can be found by terminating (22) at the kth step while retaining a
chosen accuracy.

The problem of calculating the spherical Bessel functions becomes that of
computing the continued fraction f to sufficient accuracy. Equation (22) will
be referred to as CF1, whereas CF2 will refer to a second continued fraction:
p + iq = H ′/H which is discussed in §6, eqn(34). It may be noted that the
reciprocal of (21) is also used, e.g. by Lentz,17 and that it is a more complicated
expression.

4. Evaluation of the Continued Fraction

Continued fractions are mentioned in Abramowitz and Stegun13 in §3.10 and
are covered in Numerical Recipes14 in chapter 5.2 . There is an intimate rela-
tion between recurrence relations of the type (14) and continued fractions: a
full discussion and literature guide appears in Chapter 4 of van der Laan and
Temme,20 particularly §4.8, and much valuable and detailed information ap-
pears in Wynn21 and in Wimp.22 The forward evaluation suggested in refs13,14

is not to be recommended: a backward recurrence algorithm originally due to
Miller (see ref.14 §5.4 and §6.4, ref.20 §3.3, or ref.15 Chapters 4 and 5) is superior
and is very widely used in the improved form given by Gautschi.24

The Calculation of Spherical Bessel Functions and Coulomb Functions 9

Steed’s method6 for continued fractions is a stable forward recurrence and it
has further advantages (discussed in ref.23 §4). It was adopted in the author’s
earlier programs.4,6,10,23 This method involves a summation when updating
fn−1 to become fn and was hence subject to rare numerical cancellation er-
rors when a certain denominator approached zero [ref.10 eqn(11), refs8,25,26].
Thus Steed’s method for continued fractions does not compute the result every
where to uniform accuracy. In cases where there are no zeros involved (e.g.
in calculating CF2 rather than CF1, see end of §3) then there can be no ob-
jection in principle to using it (as does BESSCC and part of the COULCC
code). The same method, although unnamed, has been used by Gautschi and
Slavik27 and is also described and recommended in the classic Gautschi paper.24

Subsequent authors have not been alert to the manifest advantages of Steed’s
method. Thompson and Barnett11 in 1987 released the code BESSCC, which
treats complex-argument Bessel functions and evaluates the complex continued
fraction involved (CF2) by Steed’s method.

The method of choice for continued fractions, however, is none of the above
but the method of Lentz17 together with the ‘zero shifts’ of both numerator and
denominator discussed by Jaaskelainen and Ruuskanen.25 That paper, however,
proposed an elaborate change to to the algorithm, whereas Thompson shows
in Appendix III of ref.12 how to achieve these shifts with minimum change to
the Lentz method. Explicitly, the Lentz–Thompson algorithm reads:

L–T algorithm for the forward evaluation of continued fractions
Given the nth convergent of a CF, i.e. the sum to n terms of

fn = b0 +
a1

b1 +

a2

b2 +
...

an−1

bn−1 +

an

bn
(23)

then evaluate f = limn→∞ (fn) to an accuracy acc with the algorithm:

f0 := b0; if (f0 = 0) f0 = small
C0 := f0, D0 := 0
for n = 1, limit do begin

Cn := bn + an / Cn−1; if (Cn = 0) Cn = small
Dn := bn + an ×Dn−1; if (Dn = 0) Dn = small
Dn := 1/Dn

∆n := Cn ×Dn; fn := fn−1∆n

if (| ∆n − 1 |< acc) exit
end

Notes:

1. If at any stage we represent fn as An/Bn(before cancellation), then the
two quotients which are used in the L–T algorithm are Cn = An/An−1

and Dn = Bn−1/Bn.
2. The parameter small should be some non-zero number less than typical

values of the quantity acc× | bn | e.g. 10−50 for typical double precision
calculations in which a sensible choice of acc is 10−14.

10 A.R.Barnett

3. The zero tests are to a working accuracy, say tol, which can be chosen to
avoid divide-by-zero error checks. It could be taken as equal to small. Thus
algebraic conditions such as ‘if (Dn = 0)’ are to be read as computation
conditions: ‘if (abs(Dn) < tol)’.

4. The constant limit is an integer designed to abort the loop if necessary.
(Our programs use limit = 20, 000. For small L-values the algorithm would
require this number of iterations for an x-value of about 20,000. Graphs,
estimates and explanations for this behavior are given in ref.7)

5. All the methods above, and others (ref.12 §3.3), apply for complex values
of ak, bk.

Lentz’s method was developed in 1975 to deal with complex arguments in
calculations of Mie scattering. Lentz required the Riccati–Bessel logarithmic
derivative [zjn(z)]′/[zjn(z)] for a range of values of n and z = x + iy. More
extreme parameter values were treated by Wiscombe18 in 1980. It must be
realised that when z lies away from the real axis, the natural directions for
recurrence in order may change, and considerably more care needs to be exer-
cised in the computations. Examples of difficulties are given in Lentz17,26 and
in ref.12 §3.1; the effect complicates the coding11 of COULCC by forcing the
monitoring of the moduli of the functions during recurrence.

The Lentz–Thompson method given above is quite general and it seems to
retain the advantages of Steed’s method and to remove the (minor) problems.
In Lentz’s papers17,26 he advocates a slightly different error-correcting proce-
dure. The choice is probably a matter of taste. However it should be restated
that nothing is particularly critical in the selection of the number small (see
2 above.) In addition, the Lentz–Thompson method can also be recommended
for complex arguments (where these numerical cancellation problems are even
less likely). It is not at all clear why ref.26 discards it for this use.

In the BESSCC paper11 Thompson gave a listing of a complex-argument
spherical Bessel code SBESJH which uses the new L–T continued fraction
algorithm. (The range of usefulness of the program in fact is greater than that
assumed by Thompson, and see also Ross.19) The code SBESJY in the next
section also adopts this technique.

5. The Programs SBESJY and RICBES

A listing of the spherical Bessel program SBESJY, for real argument, appears
in Fig.2. The four functions jL(x), j′L(x), yL(x), y′L(x) are returned for all
orders from 0 to Lmax. It is an extension of the program listing of the same
name which was published by Barnett23 in 1981, and while the principles are
identical, the realisation is rather different. FORTRAN 77 coding is used, the
arrays are indexed from 0 to maxL, the L–T algorithm replaces the Steed
algorithm for the calculation of f i.e. CF1 (which, as programmed in ref.,23

The Calculation of Spherical Bessel Functions and Coulomb Functions 11

may fail for isolated values of x, e.g. for x =
√

15), the cosine and sine functions
are used to find the L = 0 solution rather than the square root function, the
results for x = 0 are given, and all four functions are computed.

The closely related program RICBES calculates the Riccati–Bessel func-
tions of eqn(12), ψL(x), χL(x) and their x-derivatives ψ′

L(x), χ′
L(x). These

functions are equally FL(0, x), −GL(0, x), F ′
L(0, x), −G′

L(0, x) and so can
also be obtained as a special case of COULFG or COUL90 (see §7).

In the program SBESJY both the two recurrences and the continued frac-
tion are evaluated as Bessel functions. First CF1 = f is calculated from (22)
with n = Lmax, ak = −1 and bk = Tk. This yields a value j′Lmax = fjLmax

when the unnormalised jLmax is taken as unity. Then, if Lmax > 0, the do

loop to label 2 implements the downward recurrence (16) and (17), until unnor-
malised values for j0, j

′
0 are found. Relative values of jL and j′L for each L from

this procedure are stored ready for normalisation, which is accomplished by (6).
The values of y0, y

′
0 are also obtained from (6) and the recurrence relations

(18), (19) used to find the remaining L-values from 1 to Lmax. It is clear that
if a program without derivatives were required then eqns(16), (17) could be re-
placed by (15), with (21) used instead of (22, CF1). SBESJY was tested against
SBESJ,23 COULFG,4 the values in ref.13 and the two programs described be-
low, DPHRIC16 and cfbessel26. The range of parameters was x = 0.01−1000.0
and L = 0 − 1000, and in general, all results agreed to better than a relative
accuracy of 10−12 when the accur parameter is set to 10−15. Some test data
are given in §8. The first two programs are unusual in not using the functions
cos(x), sin(x) in the calculation. Those which do may suffer from truncation
error when a large value of x is reduced to the range ±1/2π by subtracting
Nπ, where N is a suitable integer. This reduction will be compiler dependent
and can be programmed, to some extent, by methods described in Cody and
Waite,33 Chapter 8, p 136. The value π is written as C1 + C2, where C1 =
3217/1024 = 3.1416 01562 50000 is exactly machine representable and C2 =
–8.9089 10206 76153 73566 E–6.

For the program RICBES both the two recurrences and the continued frac-
tion are now evaluated as Coulomb functions. First CF1 = f is calculated from
(33) with η = 0 (and hence R2

k = 1 and Tk = (2k+1)/x), and with n = Lmax.
It differs from (22) only by 1/x. This yields a value F ′

Lmax = fFLmax when
the unnormalised value of FLmax is taken as unity. Then, if Lmax > 0, the do

loop to label 2 implements the downward recurrence (26) and (27) until unnor-
malised values for F0, F

′
0 i.e. ψ0, ψ

′
0, are found. Relative values of all the FL

and F ′
L are stored ready for normalisation, which is accomplished by (13). The

values of χ0 = −G0, χ
′
0 = −G′

0 are also obtained from (13) and the upward
recurrences (29), (30) used to find the remaining L-values.

A recent program to compute jL(x) and yL(x) –called nL(x)– is that of
Gillman and Fiebig.16 Constructive criticisms of its archaic and awkward style
have been given by Welch28 who has presented rewritten versions in order to
emphasise that FORTRAN 77 and FORTRAN 90 programmers have no excuse
for producing non-structured programs. The method of Gillman and Fiebig is to
calculate modified functions uL(x), vL(x) in place of jL(x), yL(x) from which

12 A.R.Barnett

factors of xL/(2L+1)!! and −(2L−1)!!/xL+1 have been extracted. These scaled
functions tend to unity as x→ 0 (cf §2 between eqns(6) and (7).) A version of
Miller’s method is used to obtain the relative values of uL for all the L-values
considered (0–1000), with x in the range 0.01–100.0. The values are normalised
by the Wronskian relation for the u, v functions.

The reason for choosing uL(x) and vL(x) is that computational overflow and
underflow conditions are removed. In the days when representable real numbers
were restricted 10±38 or 10±70 then this was indeed a problem. It is common-
place for modern FORTRAN 77 compilers to offer 10±308 in double precision
variables (as does the Lahey F77L compiler, whose version 4.0 was used in this
work) which is large enough to remove the need for special programming in
normal physical applications.

A second point is that the u, v recurrences are assumed to be stable in
the same directions as are the j, y recurrences. This is not an obvious fact (e.g.
Lentz17,26) but the stability was proved rigorously in 1980 by O’Brien29 for real
arguments. He claimed, further, that no Miller’s method is necessary, replacing
it by two evalutions of ‘a rapidly convergent series’. (No numerical details were
given and O’Brien’s results have not yet appeared as a program.)

The third point is that tests for overall accuracy in ref.16 only address
numerical consistency, and not the method. This is recognised by Gillman and
Fiebig who say that ‘it is of some value’. It is rather puzzling to a user who
sees tests aimed at a relative accuracy of 2.10−8 apparently produce results to
better than 10−15, which is about machine accuracy. One reason may be the
tests measure the rms Wronskian deviation from unity, which reduces by the
square root of the number of L-values, and here by a factor of 30. But the same

Wronskian is used to normalise the uL-values, so the tests are not independent.
There is no need for this choice of normalisation for the exact value of u0(x)
is sin(x)/x and should be chosen instead. However, the choice of this correct
normalisation gives exactly the same result to machine precision. The correct
answer involves a more subtle point. By choosing to compute the rms deviation
over all L-values Gillman and Fiebig minimise the fact that the downwards
recurrence of Miller’s method is most at error at the high L-values which is
worst when x/L is largest. An independent calculation26 shows that j1000(x)
is in error by a fraction 10−3 for x = 100, which falls to 10−7 for x = 0.5.
The healing step in L is small: even for L = 999 the errors improve to 10−5

and 10−15. The last few L-values should not be used, and it would seem that
the choice of 1000 for the starting L is too large and their estimate of an error
ǫ ≃ (x/2L)6) is optimistic for L itself. Making the correct choice of a starting
L is the hard part of Miller’s method. Of course these comments relate only to
the regular solution jn(x); for the yn(x)-values depend only on their (accurate)
starting values y0(x), y

′
0(x) since the upward recurrence is stable. The value

of j1000(100) is 5.32338 16172 × 10−872, while j1000(0.5) = 6.06344 55462 ×
10−3172, and are clearly of mathematical rather than of physical interest.

It should be noted that two of the tables in the Gillman and Fiebig article
contain sign errors, which do not occur when the published program is run.
Specifically, in Table III, for jL(100) the entries for L = 2, 3, 4, 6, 11, 12 and 16

The Calculation of Spherical Bessel Functions and Coulomb Functions 13

have the wrong sign, as do the yL(100) entries for L = 19 and L = 50. In Table
V, v30(100) also has the incorrect sign.

The approach of ref.16 in factorising out the small-x behaviour, when rein-
forced by theory,29 works well for spherical Bessel functions. The underflows
and overflows in reapplying the normalisation to recover jL, yL can easily be
trapped by extracting, say, powers of 10±200 when appropriate, as is done by
Lentz26. There is nothing to prevent the CF1 calculation in SBESJY replacing
Miller’s method to remove the inaccuracy near the maximum L-value.

The program cfbessel.for, published by Lentz,26 calculates a single value
of jn(z), for complex z. His algorithm for the forward evaluation of continued
fractions creates an infinite product which is terminated when a given accuracy
is reached. It is a flexible and elegant concept, applicable to a wide range of
complex arguments, although just what the limits are is not discussed by Lentz.
Despite the different appearances it is the same algorithm which is described
in §4. As given, the Lentz program only results in jn(z) and not yn(z) or the
derivatives, and intermediate n-values are not calculated. Thompson’s program
SBESJH given in ref.11 includes all these features. These two codes, together
with the code sphbes of Press and Teukolsky,34 will be compared in detail in a
subsequent publication.

6. Recurrence Relations for Coulomb Functions

Each of the four Coulomb functions Fn, Gn, H
+
n , H

−
n (see eqn(19) obeys

recurrence relations [ref.13 14.2.3, 14.2.1 and 14.2.2] which connect the functions
of order (n− 1), n and (n+ 1), thus

Rnwn−1 − Tnwn + Rn+1wn+1 = 0 (25)

wn−1 = [Snwn + w′

n]/Rn (26)

w′

n−1 = Snwn−1 − Rnwn (27)

The coefficients are:

Rk =
√

1 + η2/k2

Sk = k/x+ η/k

Tk = Sk + Sk+1 = (2k + 1)[x−1 +
η

k2 + k
]

(28)

Equations (26) and (27) connecting two successive orders and a derivative
are in a form suitable for downward recurrence in n. The equivalent expressions
for upward recurrence in n are rearrangements of (27) and (26),

wn+1 = [Sn+1wn − w′

n]/Rn+1 (29)

and

14 A.R.Barnett

w′

n+1 = Rn+1wn − Sn+1wn+1 (30)

The recurrence relations (25), (26), (27) are an alternative way of expressing
the differential equation (4) as a difference equation. As Fröberg30 shows, not
even two of these recurrence relations are independent. The equation analogous
to the spherical Bessel (15) loses its simplicity and becomes

Sn+1Rnwn−1 − Tnw
′

n − SnRn+1wn+1 = 0,

and this is not particularly useful.
The boundary between solutions of oscillating and monotonic character

occurs at the turning point xL of (2), when L is fixed, or alternatively, for fixed
x it is found at LTP . This is also given by (2) and equivalently by

x2(R2
L − S2

L) = 1

or
LTP = (x2 − 2ηx+ 1/4)

1/2 − 1/2

Since FL(x) decreases to zero as L increases beyond LTP , the stable direction
(the function must not decrease) is downward recurrence in n to calculate the
values of Fn(x) (n = L,L − 1, ..., 3, 2, 1, 0). Similarly upward recurrence must
be used for Gn(x). In the region where L < LTP all the functions have an
oscillatory character and recurrence in both directions is stable.

Hence to compute both Fn(x) and F ′
n(x) for all orders from 0–L it ap-

pears that we need both functions for the maximum order L and to use (26),
(27) to find lower n-values, as was the case for the spherical Bessels in §3.
Now, however, there is no easy way to normalise at n = 0. Methods of finding
F0(η, x) and F ′

0(η, x) directly are given5 in the programs of Bardin et al. They
demand detailed numerical analysis and a knowledge of most of the properties
of Coulomb functions near the origin, in order to deal with the full range of
x and η. Similarly intricate study is required for the separate evaluation of
G0(η, x) and G′

0(η, x), as is also shown by Strecock and Gregory,31 so that the
upward recurrence equations (29), (30) will yield the irregular functions and
their derivatives for each value of the order. In all, ten separate subroutines
for the different methods are required. Bardin et al. check their independent
evaluation of the F and G functions, and their derivatives, by computing the
value of the Wronskian, which is unity for Coulomb functions:

F ′

L(η, x)GL(η, x) − FL(η, x)G′

L(η, x) = 1 (31)

although this test is not foolproof (as was shown in ref.6 section 5.)
Steed’s algorithm for calculating Coulomb functions (and hence23,4,10 Bessel

functions, spherical Bessel and Riccati–Bessel functions, Airy functions etc.) is
based on a different approach, which has the significant merit that no detailed

information about the function behaviour at the origin is required.7 It also has
the remarkable property that an individual L-value (which need not be an
integer) can be found, without computing a range of L-values. No other method
in the literature has this property. Program KLEIN illustrates10 this feature,

The Calculation of Spherical Bessel Functions and Coulomb Functions 15

which is useful for relativistic calculations in which the effective L-values for
each angular momentum channel are not integer-spaced. The algorithm consists
in combining the ratio F ′

L/FL ≡ f ≡ CF1 with the ratio H ′
L/HL ≡ p + iq ≡

CF2 and the Wronskian (31), to solve, first for FL(η, x), and then for GL, F
′
L

and G′
L all at the same time. Naturally the Wronskian relation cannot then be

used also as an independent check of the solution. The details are explained
in several references.10,23,4,7 In practice, the lowest L is chosen and CF2 is
evaluated, almost invariably, for L = 0. The value f is obtained from CF1
evaluated for the highest L required, followed by a downwards recurrence. The
functions GL and G′

L are found by upward recurrence from G0 and G′
0.

In order to obtain CF1 we proceed as in §3. From (28), which is satisfied
by Fn(x), we see that the logarithmic derivative is given by,

F ′
n

Fn
= Sn+1 − Fn+1

Fn
(32)

and from (25) a continued fraction for the ratio of successive orders can be
derived6,7 which is analogous to (22). Combining it with (32) we find,

CF1 : f ≡ F ′
n

Fn
= Sn+1 − R2

n+1

Tn+1 −
R2

n+2

Tn+2 −
...

R2
k

Tk − ...
(33)

Eventually Tk will become large enough so that the value of f can be deter-
mined by terminating the evaluation at the kth step, as in (24). To recover the
specialised equation (22), set η = 0, i.e. R2

k = 1 and Tk = (2k+ 1)/x, and take
the derivatives of (5), which turns Sn+1 into Sn.

A major feature of Steed’s algorithm is the conversion of two (slow) asymp-
totically convergent series, for HL(η, x) and its derivative, into a ratio which
could be expressed as a rapidly convergent continued fraction. This second
continued fraction, CF2, is derived in ref.6,7 and reads:

CF2 : p + iq ≡ i(1 − η/x) + ix−1 ab

2(x− η + i)+

(a+ 1)(b+ 1)

2(x− η + 2i) + ...
(34)

where a = iη − L and b = iη + L + 1. It may also be computed by the L–T
algorithm. For the case when x becomes smaller than xL, eqn(2), then p loses
accuracy relative to q. The reasons are explained in refs7,10 and are discussed
by Nesbet,8 who suggests an alternative algorithm to minimise the difficulty.
In practice it is only of minor concern when η < 0 because of (2), and because
the minimum L needed is zero.

16 A.R.Barnett

7. The Program COUL90

The new version of the COULFG program, COUL90, follows the logical flow
of its predecessor4 and differs, first, in the choice of the L–T algorithm for
evaluating CF1, and secondly in adopting FORTRAN 77 conventions. Assume
that the minimum L-value required is xm (not necessarily an integer) and the
maximum is LRANGE + xm. (Except in rare circumstances32 it is computa-
tionally desirable to set xm = 0.0. A serious loss of accuracy is possible when
xm is chosen large enough that the required x-value is well below the turn-
ing point, xxm.) CF1 is calculated for LRANGE + xm and then downward
recurrence using (26), (27) carries the relative values of Fn(η, x) and F ′

n(η, x)
from n = LRANGE + xm − 1 to n = xm. The fraction CF2 is calculated at
angular momentum xm and all the lowest-order functions are found, with the
help of (31). Equations (29) and (30) are used to obtain all higher L-values,
xm+ 1, xm+ 2, ... , xm+LRANGE.

The CALLing argument list is:
CALL COUL90 (X, ETA, XLMIN,LRANGE, F,G,FP,GP, KFN, IFAIL)
where X, ETA, XLMIN are double-precision variables; LRANGE is the integer
number of additional L-values required; F,G,FP,GP are double-precision arrays
dimensioned at least (0:LRANGE); KFN selects the particular function (0 for
Coulomb, 1 for spherical Bessel, and 2 for cylindrical Bessel); and IFAIL is
an integer which is set to zero after a successful computation (and should be
checked by the user). Generally XLMIN = xm, the minimum L-value, will lie
between 0.0 and 1.0 (most usually 0.0) and LRANGE will just be the maximum
L-value. To compute the oscillating Airy function, for example, then XLMIN
= −1/6, LRANGE = 0 and a suitable23 normalising constant is used. It is an
easy matter to vary the calculation (as was done in the COULFG program)
to obtain the various Bessel functions, and KFN parameter in the argument
list allows for this. In the earlier code, provision was made for a mode choice,
whereby storage could be saved by not storing the derivatives. This option has
been removed, since most matching is formulated in terms of the logarithmic
derivatives, and earlier core memory restrictions are no longer a factor.

The code produces results which are virtually the same as the test cases for
COULFG,4 to which reference should be made for the details. Minor differences
can be traced to whether the compiler is set to optimise and if it is set to
truncate, chop or randomise rounding. Selected test data are given in the next
section.

8. Test calculations

The brief table contains values of the Coulomb functions calculated with the
subroutine COUL90 for x = 20, 200 with η = −0.50, 0.00, 0.50 and for x =

The Calculation of Spherical Bessel Functions and Coulomb Functions 17

1.0, 30.0, 1000.0, with η = −5.2 and each calculation for the range of orders,
L = 0 − 50. Examples of a few spherical Bessel (j, y) and cylindrical Bessel
functions (J, Y) are also given. They agree with the relevant codes SBESJY
(j, y) and RICBES (xj, xy) and the values in Chapter 10 of Abramowitz and
Stegun.13 An extensive table incorporating most of the tests in ref.4 and also
the complete listings of the programs is to be found on the accompanying disc.

The last two calculations show the effect of taking xm too large. Six decimal
places of accuracy are lost in J5(1.0) etc when xm = 5.0 compared with the
values when xm = 0.0. The turning–point value is at x = 5 which is well
outside the argument of x = 1.0.

Acknowledgements

This work was completed while the author was on sabbatical leave at the Uni-
versity of Auckland. He is most appreciative of the help and welcome that he re-
ceived from the Physics Department there. The comments of Dr. I.J.Thompson
on a draft version are also appreciated.

18 A.R.Barnett

References

1. A. R. Curtis; Coulomb Wave Functions vol.11 Royal Soc. Math. Tables

(Cambridge University Press, London, 1964) 9–25
2. M. J. Seaton; Comp. Phys. Comm. 25 (1982) 87–95; ibid 32 (1984) 115–119
3. K. L. Bell and N. S. Scott; Comp. Phys. Comm. 20 (1980) 447–458
4. A. R. Barnett; Comp. Phys. Comm. 27 (1982) 147–166 (program COULFG)
5. C. Bardin, Y. Dandeu, L. Gauthier, J. Guillermin, T. Lena, J.-M. Pernet,

H. H. Wolter and T. Tamura; Comp. Phys. Comp. 3 (1972) 73–87
6. A. R. Barnett, D. H. Feng, J. W. Steed and L. J. B. Goldfarb; Comp. Phys.

Comp. 8 (1974) 377–395 (program RCWFN)
7. A. R. Barnett; J. Comp. Phys. 46 (1982) 171–188
8. R. K. Nesbet; Comp. Phys. Comm. 32 (1984) 341–347
9. C. J. Noble and I. J. Thompson; Comp. Phys. Comm. 33 (1984) 413–419

(program COULN)
10. A. R. Barnett; Comp. Phys. Comm. 24 (1981) 141–159 (program KLEIN)
11. I. J. Thompson and A. R. Barnett; Comp. Phys. Comm. 36 (1985) 363–372

(program COULCC); ibid 47 (1987) 245–257 (program BESSCC)
12. I. J. Thompson and A. R. Barnett; J. Comp. Phys. 64 (1986) 490–509
13. H. A. Antosiewicz (Ch. 10) and M. Abramowitz (Ch.14) Handbook of Math-

ematical Functions, eds. M. Abramowitz and I. Stegun; (Nat. Bur. Stds.,
New York, 1964)

14. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling Numer-

ical Recipes: The Art of Scientific Computing (Cambridge U. Press, New
York, 1988)

15. S. E. Koonin; Computational Physics (Benjamin/Cummings 1985)
16. E. Gillman and H. R. Fiebig; Comput. Phys. 2 (1) (1988) 62–72
17. W. J. Lentz; Appl. Opt. 15 (1975) 668–671
18. W. J. Wiscombe; Appl. Opt. 19 (1980) 1505–1509
19. W. D. Ross; Appl. Opt. 11 (1972) 1919–1923
20. C. G. van der Laan and N. M. Temme; Calculation of special functions: the

gamma function, the exponential integrals and error-like functions (CWI
tract 10 Mathematisch Centrum 1984)

21. P. Wynn; Proc. K. Ned. Akad. Wet. Ser. A65 (1962) 127–148
22. J. Wimp; Computation with Recurrence Relations (Pitman, London, 1984)
23. A. R. Barnett; Comp. Phys. Comm. 21 (1981) 297–314
24. W. Gautschi; SIAM Review 9 (1967) 24–82
25. T. Jaaskelainen and J. Ruuskanen; Appl. Opt. 20 (1981) 3289–3290
26. W. J. Lentz; Comput. Phys. 4 (1990) 403–407
27. W. Gautschi and J. Slavik; Math. Comp. 32 (1978) 865–875
28. L. C. Welch; Comput. Phys. 2 (5) (1988) 65–75
29. D. M. O’Brien; J. Comp. Phys. 36 (1980) 128–132
30. C. E. Fröberg; Rev. Mod. Phys, 27 (1955) 399–411
31. A. J. Strecock and J. A. Gregory; Math. Comp. 26 (1972) 955–975
32. D. H. Feng and A. R. Barnett; Comp. Phys. Comm. 11 (1976) 401–420

The Calculation of Spherical Bessel Functions and Coulomb Functions 19

33. W. J. Cody and W. Waite; Software Manual for the Elementary Functions

(Prentice Hall Series in Computational Mathematics 1980)
34. W. H. Press and S. A. Teukolsky; Comput. Phys. 5 (3) (1991) in press

