FRESCO: Coupled-channels Calculations

Finite-Range with Exact Strong COuplings.

Talk at INT 15-58W, Seattle Wed, March 4, 2015

Lawrence Livermore National Laboratory

Ian Thompson

LLNL-PRES-667633

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Fresco

- Started in 1983 at Daresbury Laboratory
- First for 2-step transfer contributions to ¹⁷O*.
- Main paper in 1988: *Computer Physics Reports*, Vol 7, 167-212. Now has 930 citations.
- Source & docs available at <u>www.fresco.org.uk</u>, hosted at Univ. Surrey.

- Versions since 2006: 'public' FRES (3.1), and 'Livermore' FRXY (6I) *
- Textbook (CUP, 2009)
 "Nuclear Reactions for Astrophysics" with
 Filomena Nunes.
 Now sold 873 copies.
- Still being maintained, and developed, with queries answered.

2-step transfer contributions to ¹⁷O*

Fig. 2. Differential cross section measurements of the 208 Pb $(^{17}O, ^{17}O^*(1/2^*))^{208}$ Pb (upper) and the 208 Pb $(^{18}O, ^{18}O^*(2^*))$ 208 Pb (lower) reactions at 78 MeV incident energy. The curves are theoretical calculations. The dot-dashed curve includes Coulomb excitation and the nuclear core (^{16}O) excitation only. Adding the valence neutron interaction gives the short-dashed ("direct only") curve. The effect of adding two-step transfer processes using the approximations of ref. [1] is given by the long-dashed curve; the solid curve is the result of a more rigorous calculation described in the text.

Lawrence Livermore National Laboratory

Lilley et al, PL 128B, 153 (1983)

Lilley et al, NPA 463, 710 (1987)

Documentation

- Methods of Direct Reaction Theories, paper in "Scattering" ed. Pike & Sabatier (2001)
- User Guide: Appendix A of Nuclear Reactions for Astrophysics(2009)
- Coupled Channels Methods for Nuclear Physics, (1988)
- Input manual

See http://www.fresco.org.uk/documentation.htm

Basic Idea

- Reactions between two nuclei: entrance and exit
- Multiple mass partitions.
- Energy, spin and parity given for all initial and final states of all nuclei.
- Unlimited lists of potentials and couplings.
- Solve coupled equations
- Predict cm cross section distributions.

- Standard forms for
 - optical potentials,
 - bound states,
 - inelastic, transfer and capture mechanisms,
 - etc
- Written in Fortran 90
 - Tested on wide range of compilers

The Coupled Equations

For each total spin $J_{\rm tot}$ and parity π

$$[T_{xL}(R) + V_c(R) - E_{xpt}]\psi_{\alpha}(R) + \sum_{\alpha'} \langle \alpha | V | \alpha' \rangle \psi_{\alpha'}(R') = 0.$$
with

with

$$\hat{T}_{xL}(R_x) = -\frac{\hbar^2}{2\mu_x} \left[\frac{\mathrm{d}^2}{\mathrm{d}R_x^2} - \frac{L_x(L_x+1)}{R_x^2} \right]$$

and

$$\langle \alpha | V | \alpha' \rangle$$
 either local $R = R'$, or non-local $R \neq R'$

satisfying the boundary conditions

$$\psi_{\alpha\alpha_i}^{J_{\text{tot}}\pi}(R_x) = \frac{\mathrm{i}}{2} \left[H_{L_i}^-(\eta_\alpha, k_\alpha R_x) \,\delta_{\alpha\alpha_i} - H_L^+(\eta_\alpha, k_\alpha R_x) \,\mathbf{S}_{\alpha\alpha_i}^{J_{\text{tot}}\pi} \right]$$

Lawrence Livermore National Laboratory

LLNL-PRES-667633

Fresco

Optical and Binding Potentials

- Central, spin-orbit and tensor forces.
- WS, Gaussian (etc) shapes, or read in.
- Deformation by rotational model, or by arbitrary strengths
- Linear energy interpolations.

- L-, J-, and paritydependent potentials.
- Set Effective masses m*(r)
- Ane isospin couplings

Coupling Mechanisms

- Inelastic
 - Deformed optical potls.
 - Single-particle excitations
- Transfers of a cluster
 - Zero range, LEA.
 - Finite range
 - Non-orthogonality terms.
- Two-nucleon transfers
 - From & to correlated 2N wfs from correlated 1N wfs, or read in from 3-body code.
 - Sequential and Simultaneous

- Capture to γ channels
 - Ek in Siegert approx.
 - Mk magnetic transitions
 - (both in localized approx.)
- R-matrix phenomenology
- General LSJ couplings
 - Local or non-local
 - Numerical forms read in
- General partial wave couplings
 - Numerical local or nonlocal

Solving the Coupled Equations

- Numerov integration of equations with local couplings: 'exact'
- Iteration on non-local couplings (eg. transfers).
- Use Pade acceleration if *n*step DWBA diverges.
- Use James Christley's coupled-Coulomb wave functions CRCWFN for long-range multipoles
- Isocentrifugal approx.

- R-matrix solutions:
 - Expand on eigenstates of diagonal optical potls
 - Need Buttle corrections.
 - More stable numerically
- ☆ Lagrange-mesh method:
 - From Daniel Baye (ULB)
 - No Buttle correction needed
- MPI: to solve J^π sets in parallel.
- OPENMP: to solve coupled equations for given J^π.

Breakup: beyond 2-body channels

CDCC:

- Use continuum singleparticle states
- Orthonormalized in segments.
- Post-processing by Jeff Tostevin for coincidence breakup cross sections.
- Converges ok (if no transfer bound states!)

× XCDCC

- Neil Summers

 extended CDCC
 method to deal with
 <u>deformed core states in</u>
 single-particle states.
- Example for breakup of ¹¹Be = ¹⁰Be(0⁺,2⁺) + n

Lawrence Livermore National Laboratory

Fresco

Coherent multistep effects

Input Formats

- OLD style #1:
 - Card inputs cols 1—72
- NAMELIST style #2:
 - Fortran var=value text
- CDCC style #3:
 - Generate easily the NAMELIST sets of bins and couplings for CDCC calculations.

Output Formats

- Cross sections $\sigma(\theta)$
- Amplitudes f_{mM:m'M'}(θ)
- CDCC amplitudes for post-processing.

Sfresco: searching for χ^2 minimums

- Define data with errors:
 - Energy and/or angle data
 - Polarization data
 - Angle-integrated data
 - Phase shifts in given channel
 - Fitted bound state parameters
- Define parameters Initial values and limits of:
 - Optical parameters
 - Spectroscopic amplitudes
 - R-matrix pole energies & widths
 - Data normalizations

- Searching
 - Interactive or given method
 - Uses MINUIT
 - Plot initial or final fits
 - Trace χ^2 progress
 - Restart at any trial set.

Current Developments

☆ LLNL:

- General nonlocal potentials
- Effective masses m*(R)
- Lane couplings for IARs
- IAR non-orthogonality (p,p')
- Semi-direct capture step
- Surface operator for transfer
- Jeff Tostevin:
 - Breakup coincidence cross sections with core excitation in XCDCC
 - Simple zero-range transfers

- Alex Brown
 - Using shell-model twonucleon overlaps for transfers (seq+sim).
- Antonio Moro:
 - Stabilizing the solutions from Numerov method
 - More NN standard forms for tensor forces
 - Deformations in optical potentials in transfer operator

Missing Capabilities

- Core transitions in electromagnetic particle steps.
- Perey-Buck nonlocality in optical potentials.
- Spin-dependence of optical potentials in transfer operators.
- Energy-dependence of optical potentials in transfer operators.

 Uniform treatment of antisymmetrization and identical particles

 <u>Convergence problems</u>:
 CDCC breakup with all-order couplings to transfer channels.

