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A subroutine is given to solve a set of coupled radial Schrédinger equations for real multipole potentials. The
subroutine uses the piecewise analytic method and is particularly useful for long-range Coulomb excitation calculations.
It is designed to be used within a conventional coupled channels code to provide coupled Coulomb wavefunctions to
match to the solutions calculated for short-range nuclear couplings.

PROGRAM SUMMARY
Title of program: CRCWFN
Catalogue number: ACPT
Program obtainable from: CPC Program Library, Queen’s
University of Belfast, N. Ireland (see application form in
this issue)
Licensing provisions: none
Computer: Sun Sparcstation 2
Operating System: UNIX

Programming language used: Fortran77

Memory required to execute with typical data: 820 Kbytes
for test case

No. of bits in a word: 32
Peripherals used: terminal, printer

No. of lines in distributed program, including test data, etc.:
1612

CPC Program Library subprograms used: Cat. no.: ABNK;
Title: COULFG; Ref. in CPC: 27 (1982) 147-166

Keywords: nuclear, coupled channels, Coulomb-excitation,
Schrodinger equation, heavy-ions

Nature of physical problem

Solutions to coupled Schrédinger radial equations are cal-
culated for real multipole potentials. The method is par-
ticularly suited to Coulomb excitation of heavy ions where
multiple coupling is significant to large radii. The subrou-
tine is designed to be used within existing conventional
coupled channels codes. '

Method of solution :
The piecewise analytic method of Gordon [1] is used. The
integration range is divided into segments. In each segment
the potential is approximated by a straight line and analytic
solutions for the straight line potentials (Airy functions)
are calculated. First and second order corrections for the
approximation of the potential are applied by analytic in-
tegrals. Matrix methods are used to find solutions that are
continuous and smooth at each boundary.

Restriction on the complexity of the problem

The potentials must be real and expressed as a inverse
power series of 7. The method is not stable in classically
forbidden regions (E < V). The subroutine returns the so-
lution and derivative at the end point with no information
on the behaviour within the integration region.

Typical running time
1.4 CPU seconds execution time for test case (with com-
piler optimisation).

Reference
[1] R.G. Gordon, J. Chem. Phys. 51 (1969) 14-25.
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LONG WRITE-UP

1. Introduction

Coupled channel calculations are performed by solving a set of coupled radial Schrédinger equations.
The conventional approach [1] uses numerical integration methods (e.g. Numerov [2]), which we
shall refer to as step-by-step methods, to integrate solutions outwards from the origin to a sufficiently
large radius that the coupling is negligible. The solutions are then matched to solutions of the uncoupled
equations (Coulomb wavefunctions) with the correct scattering boundary conditions. This matching
process produces the S-matrix values.

This method is very successful when the coupling is short ranged but in many reactions (e.g. heavy-
ion scattering) long-ranged Coulomb multipole couplings are significant. In such reactions the radius
at which the coupling is negligible is very large and the step-by-step integration methods become very
inefficient [3]. There has therefore been a long term interest in alternative methods to calculate the
effect of coupling in the Coulomb excitation region [4]. In this paper we describe a method that
includes coupling to all orders and which can be included within existing coupled channels codes.

The objective is to produce a complete set of solutions at a radius R;, which obey the asymptotic
boundary conditions and which include the effects of coupling at radii greater than Rj,. The radius R,
is chosen to be sufficiently large that the nuclear potentials are negligible. We call the set of solutions
coupled Coulomb wavefunctions [5,6,3]. These can be matched at R;, to solutions integrated out
from the origin by conventional methods in order to obtain the S-matrix.

Burke and Schey [4] were the first to address the problem using asymptotic expansions, Alder and
Pauli [7], and Norcross and Seaton [8,9] showed how the solutions can be expressed as products of
uncoupled Coulomb functions and modulating amplitudes. The modulating amplitudes obey coupled
second-order differential equations [5,10] which, as the amplitudes are slowly varying functions of r,
can be approximated by coupled first-order equations. Rosel [11] showed the modulating amplitudes
may be expressed as an asymptotic series in inverse powers of r. If the states are degenerate (or
the adiabatic approximation is used) the amplitudes can be calculated accurately using a three-term
recursion relation. However, for the non-degenerate case the resulting four-term recursion relation is
numerically ill-conditioned {6]. Rhoades-Brown et al. [6] solve the approximate coupled first-order
equations for the modulating amplitudes using first-order Born approximation to integrate from Roy; to
Rin. The integrals can be expressed as an asymptotic series and can be evaluated using rapid recursion
relations. This is equivalent to DWBA for Coulomb excitation in the asymptotic region and assumes
multiple excitation and reorientation are negligible in this region.

In this paper the coupled Coulomb wavefunctions are calculated using the piecewise analytic method
[12]. The integration range is divided into segments in which the potential can be approximated by
a straight line. The solution in each segment can then be expressed as a product of Airy functions and
slowly varying coefficients. The coefficients can be calculated from analytic integrals so the solution
is only evaluated at each segment boundary. This method was first described by Gordon [12] for
atomic scattering and has been used for heavy-ion Coulomb excitation by Tolsma [13,14].

In the piecewise method the segment size is dependent on the smoothness of the potential and the
oscillatory nature of the solutions is provided by the basis Airy functions. This allows for much larger
step sizes than conventional methods such as Numerov. Although the calculation per step is more
complicated, time savings of several orders of magnitude are typical.

The piecewise method is preferable to the Alder-Pauli factorisation methods because it solves the
coupled equations to all orders of coupling. Multi-step contributions and reorientation effects are
treated fully. However the piecewise method is slower than the Alder-Pauli based methods.

For a general derivation of the piecewise method and an analysis of the errors see Gordon [12,15].
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Tolsma [14] describes improvements to the method including diagonalising the coupled potentials in
each step, re-orthogonalising the solutions, and using Coulomb functions instead of Airy functions as
reference solutions. Our comparatively simple implementation achieves an acceptable performance
without employing these features. The subroutine CRCWFN can be included in existing coupled channels
codes. It has been added as an option in recent versions of FRESCO [1].

2. Piecewise analytic method

In this section we briefly describe the piecewise method. To illustrate the method we first describe
a one channel application before generalising for coupled channels.

2.1. One channel problem
We seek a solution to the one-channel radial equation

2
%‘(r) + K2 - U u(r) = 0 (1)

in the range R;, < r < Ry where k is the asymptotic wave number and U (r) is the potential:

2u Id+1)
U(r) = FV(r)+—_r—2. (2)
The integration range is divided into segments. We will discuss the method of choosing the segment
length later.
Initially consider one segment from r; to ;. We approximate the potential U (r) in the segment by
a straight line U%(r)

V() = Unar + =P | 3)

r=r

where Upagr is the average of the potential in the segment and dU/dr is evaluated at the mid point 7.
The general solution of the radial equation with the approximate potential

2
SR ) + K = UM () = 0 )

can be written as a linear combination of Airy functions

w(r) =aA(r) + b B(r), (5)
where
A(r) = Ai(a(B + 1)), B(r) = Bi(a(f +71)). (6)

The Airy functions obey the equation d2Ai(z) /dz? = zAi(z), so the constants « and § can be shown
to be
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_ Usr—K?__
- aC;arr=7

The solution of the original radial eq. (1) can be written as a product of the Airy functions A(r), B(r)
and coefficients a(r), b(r) that vary slowly with r:

a = [dU/dr|,_;]'"?, B (7

u(r) = a(r) A(r) + b(r)B(r). (8)

The radial dependence of the coefficients can be shown [12] to be proportional to the error in the
linear approximation for the potential

a'(r) = —nB(r)[U(r) = Ur)]u(r), b'(ry = rA(r)[U(r) = U%(r)u(r) . (9)

Assuming we know the solution and derivative at r = ry then the values of the coefficients at rq are
uniquely determined (as the solution and derivative must be continuous)

u(ro) = a(ro) A(ro) + b(ro) B(ro),  u'(ro) = a(ry) A'(rg) + b(ro) B'(ro). (10)

(Terms including a’ (rg) and &' (r9) can be shown to cancel [12]).
Integrating eqs. (9) from ry to , we obtain an expression for the solution at r = r;:

u(ry) = a(r) A(ry) + b(r1) B(r), (11)

with

a(r) =a(ry) - n/dr B(r) [U(r) - U°(r)] u(r),

b(ry) =b(ry) +7t/drA(r) [U(r)—UO(r)]u(r). (12)

This expression is exact but requires knowledge of the solution u(r). We use it as the basis for
approximations:

(i) As the coefficients are slow varying we can approximate u#(r) on the right hand side by the
approximate solution

ul(r) = alrg) A(r) + b(ro) B(r). (13)
(ii) U(r) — U%r) is approximated in the segment by a quadratic AU (r) so that the integrals may
be solve analytically.

An approximate form of the solution at r; is therefore

y(r)) ~a®(r) A(ry) + 5V (ry) B(r1) (14)

aV(r)=a(r) - n/dr B(r) AU (r)u(r),
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n
b (r)=b(ro) + n/dr A(r)AU(r) u°(r) .
To
It is easier to apply the boundary conditions if we reformulate the problem so the coefficients remain

constant over the segment but corrections are made to the functions A(r;) and B(ry):

u(r))=aM(r)) A@r) + bV (1) B(r)
=a(rg) A°(r1) + b(ro) B(r), (15)

where

AS(r) = [(1 + DA% A(r)) + DBA B(r)],

BS(r,) = [(1 + DBB)B(r) + DAB 4(r)], (16)
DAA _ n/dr B(r)AU(r) A(r), pBB _ —n/drA(r)AU(r) B(r),

DAB — —n/drB(r)AU(r) B(r), DBA= n/drA(r)AU(r) A(r)

Analytical expressions exist for these integrals [12,14]. (Precautions must be taken to avoid cancel-
lation errors when evaluating the analytic expressions on the computer.)
We now have expressions for the solutions at 7 = rpand r = ry,

u(ry) = a(rg) A(rg) + b(rg) B(rp), u' (ro) = a(rg) A'(ro) + b(rg) B'(rg),
u(ry) = a(rg) AS(r) + b(re) BS(r1), ' (r) = a(rg) A% (1) + b(ry) B® (ry), (17)

where there are two unknowns (a(ry) and b(ry)), and all other terms are determined by the energy
and potential within the segment.

It is a simple problem in linear algebra to solve for the coefficients @, b in each segment to give a
smooth, continuous solution across the integration region Ry, to Ryy;. This can be solved efficiently
using the LU decomposition method [16]. This method has the advantage that once the matrix has
been decomposed, the backsubstitution stage can be repeated easily for a range of different solutions.
One disadvantage of the method described is we only obtain the solution at the end points and have
no information on the behaviour of the solution within the integration region.

The segment sizes must be chosen to allow the integration to proceed quickly within a known degree
of accuracy. This is done by ensuring the error in approximating the potential U (r) — U%(r) is within
a user determined tolerance. As we use a linear approximation, the error is proportional to the second
derivative of the potential. In the subroutine CRCWFN the step size /4 is determined from the user set
tolerance ACC by

h=4 [ACC/(d2U/dr2)|,=,o] " (18)
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For example, if the potential is U (r) = 100/r and ACC= 0.0001 then the stepsize is #=0.25 fm for
ro=20 fm, and A=8 fm for ro= 200 fm.

For very large r (more than 1000 fm) it is more efficient to use constant potential approximations
instead of linear approximations. The reference solutions are sines and cosines rather than Airy func-
tions. The subroutine CRCWFN allows the user to specify a radius RSWITCH at which this change from
linear to constant approximations takes place.

2.2. Coupled channels problem

The coupled channels form of the piecewise method uses generalised forms of egs. (1)-(18) with
the solutions and potentials represented by vectors and matrices. In the following description bold
type indicates a column vector or matrix.

In a coupled channels calculation we must solve a set of N coupled radial Schrodinger equations
for each total angular momentum J and parity:

2
(% LR - U,{,m(r)) U (r) = 3 Upn () w5 (1), (19)
r

n#¥Em

where k,, is the asymptotic wave number for channel m, 4, (r) is the mth element of the radial solution
vector u’ (r) and Uy}, is an element of the potential matrix U’ () that couples channels m and n,

Zﬂm lm(lm + l)
[U(r)]mn = Unn(r) = "hTan(r) +5mn_"r2_‘- (20)

(We will omit the J superscripts in the following discussion.)
The integration range is divided into segments and in each segment a reference potential matrix U°
is constructed from linear approximations to the diagonal elements of U,

[Uo(r)]mn = Omn (—U—mm + (r—7) dUmm/drlr=7) s (21)

where U, is the average of U, (r) over the segment.
The reference potential U° is diagonal so the reference solutions of the approximate radial equation

2
(2197 + k2 - U;:,m(r)) Wy (r) =0 (22)
.

can be expressed as products of diagonal matrices of Airy functions A and B and coefficient vectors a, b

w(r) =A(r)a+B(r)b, (23)
where
[A(r)],,n = OmnAilam(Bm + 1)), [B(r)],,, = OmuBilam(Bm + 1)), (24)
dUmm 1/3 —Umm - k’Zn —_
m = ( dr r=7) ’ Pm = dUmm/dr‘r=F -
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The solution vector to the coupled equations (19) can be written as a product of the reference solution
matrices and coefficients vectors a(r),b(r) which vary slowly with r. The solution at the beginning
of a segment is

u(rg) = A(rg)a(rg) + B(ro) b(rp) . (25)

If the solution at ry is known then a(rg) and b(ry) are uniquely determined. The solution at r; can be
obtained by the same procedure as for the one channel case

u(r;) = AC(r1) a(ro) + BC(r) b(ro) . (26)

The matrices A€ and BC are obtained using a generalised form of eq. (16) involving matrix multipli-
cations. For example

DAA = n/dr B(r)AU(r) A(r), (27)

where AU(r) is a matrix of quadratic fits to U(r) — U®(r). As the reference potential U° is diagonal,
effects of coupling appear only in these correction integrals.

Evaluation of the off-diagonal terms of these integrals is likely to be sensitive to cancellation errors
if the solutions in two channels are very similar. The subroutine CRCWFN checks for loss of accuracy
and if more than six digits are lost the subroutine repeats the integral assuming the basis functions
in the two channels are identical. This is important for nearly degenerate states of the same orbital
angular momentum.

We use the LU decomposition technique [16] to solve the boundary conditions and obtain a con-
tinuous solution across the integration range. For an N channel problem the matrix of solutions has
a (2N x 2N) matrix on the diagonal corresponding to each segment boundary. As there may be typi-
cally a hundred segments, the resulting matrix can be very large but sparse, with all the non-zero ele-
ments within a band extending 2N either side of the diagonal. The subroutine CRCWFN uses a system
of pointers to avoid storage and manipulation of zero elements. Once the matrix of reference solutions
is decomposed into lower and upper triangular form we can use backsubstitution [16] repeatedly to
propagate solution vectors from Rgy t0 Riy.

The piecewise method is applicable to any smooth potential. Our implementation (CRCWFN) has
been designed for Coulomb excitation. The potentials must be real and expressed as an expansion in
inverse powers of r. These constraints increase the efficiency of the subroutine as all the arithmetic is
real, and the approximations to the potential can be calculated analytically.

Care must be taken when integrating into classically forbidden regions. If V' > E then the Airy
functions are exponential in behaviour. If the integration is continued into the classically forbidden
region, the most rapidly increasing component will dominate and the linear independence of the
solution is lost. This problem is common in solving coupled equations but is particularly serious in
this case as we specify the asymptotic boundary conditions and therefore do not obtain a regular
solution. The Numerov integration region should therefore be chosen such that Ry, is a few fm inside
the classical turning point of the largest partial wave.

For very high partial waves the classical turning point is at a sufficiently large radius that only
Coulomb forces act. It has proved acceptable in these cases to omit the Numerov integration completely
and match the coupled Coulomb wavefunctions to zero a few fm inside the classical turning point. This
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technique is included as an option in FRESCO [1] and, although simplified, can produce acceptable
results for high partial waves very quickly.

3. Coupled Coulomb wavefunctions

In this section we define coupled Coulomb wavefunctions, describe how they can be calculated using
the piecewise integration method, and show how they can be used to obtain the S-matrix.

We use the overline notation to indicate a coupled Coulomb wavefunction (e.g. F(") (r)). The

coupled Coulomb wavefunction F” (Rin) is the solution vector at Rj, that, when integrated out to

Rout, has the form of a Coulomb function Fj, (Roy) in channel # and zero in all other channels.
Coupled Coulomb functions are obtained by integrating uncoupled Coulomb functions evaluated at

Ry inwards to Rj,. We construct solution vectors at ¥ = Ry With an uncoupled Coulomb function F;

or G in one channel and zero in all other channels. For example the mth element of vector F(") (Rout)
is

F" (Rowt) = 6mnFy, (Rout) - (28)

The bracketed superscript refers to the non-zero element at Ryy. With the corresponding E(") vectors
this gives 2N linearly independent vectors. These solutions are integrated using the piecewise method

to give the corresponding coupled Coulomb wavefunctions at Ry, F (Rin) and —G—(n) (Rin).
The mth channel component of the solution of the coupled radial Schrodinger equation (19) satisfies
the asymptotic boundary condition

tm (Row) = 31 [mal; (Row) = SmaH (Rout)] (29)

where ¢ is the incident channel and R,y is a radius beyond which all coupling is assumed negligible.
The outgoing and ingoing Coulomb functions are defined H t = G, + iF;, and H = G, —iF,.

As the coupled Coulomb wavefunctions include the effects "of coupling in the reglon Rin < r < Ry,
an equivalent expression for the boundary condition (29) is

tm (Rin) = %i (ﬁ;, “(Rin) =3 SuaH ‘"’(Rin)) : (30)

where

(a) + (n) (n)

(Rin) = G (Rin) —iF 2 (Rin) , (Rin) = GO (Ri) + iF 2 (Ria) - (31)

In this equation H,, @ (R;n) is the mth channel contribution of an incoming wave in channel a and
F,: ) (Rin) is the mth channel contribution to an outgoing wave in channel n. The S-matrix can
therefore be obtained by matching, at R;,, the coupled Coulomb wavefunctions to solutions integrated
out from the origin.
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4. Description of input

The calling sequence is:

CALL CRCWFN (NCH, AK2, KMAX, COUPL, RIN, ROUT, ACCRCY,
V, FCC, GCC, MCH, MAXYV, CORREC, DERIYV, CFG, SWITCH)

The variables have the following type and meaning (all real variables are declared to be double
precision):

NCH (integer) Number of channels used.
AK2(MCH) (real array) Asymptotic wave number squared k2 for each channel.
KMAX (integer) Maximum inverse power of r in expansion of potential.

COUPL(MCH,MCHKMAX) (real array) Magnitude of coupling potential for each multipolarity (see
below).

RIN(2) (real) RIN(1)= Rj, is the inner radius at which the solutions are calculated. If DERIV:is
FALSE the solutions are also calculated at RIN(2).

ROUT (real) Outer radius of the integration.
ACCRCY (real) Tolerance used in choosing segment size (typically 0.01).
V(MAXV) (real array) Large work array.

FCC(MCH,MCH,2) (real array) This array, along with GCC, contains the solution vectors:

+On input FCC(m,n,1) is the mth element of the nth solution vector at Royw. It is normally set
to: FCC(m,n,1) = Omn F, (kmRout, 1m). FCC(m,n,2) is the derivative with respect to r. These initial
conditions are calculated internally if CFG is TRUE.

+On output FCC(m,n,1) is the mth element of the nth solution vector at Ri,: If DERIV is TRUE then
FCC(m,n,2) is the derivative with respect to r. If DERIV is FALSE then FCC(m,n,2) is the solution at RIN(2).
GCC(MCHMCH,2) (real array) As for FCC for Coulomb functions G;.

MCH (integer) Maximum number of channels.

MAXV (integer) Size of work array v. This must be > 10*NCH*NCH*NSTEPS. Unfortunately NSTEPS
(the number of segments required) is not known initially. NSTEPS= ROUT-RIN may be acceptable as
a first estimate. The subroutine will print an error message to stream 6 if this parameter is too small.

CORREC (logical) If FALSE the correction calculations are omitted and the uncoupled basis func-
tions are used. This should only be used for a quick check of array sizes and will not give accurate
values for the solutions.

DERIV (logical) If TRUE the subroutine returns the coupled Coulomb wavefunctions and derivatives
evaluated at one radius, RIN(1). If FALSE the subroutine returns the values of the coupled Coulomb
wavefunctions at two radii, RIN(1) and RIN(2).

CFG (logical) If TRUE the subroutine calls COULFG [17] to calculate uncoupled Coulomb wave-
functions at ROUT (see below) and construct the initial values for FCC and GCC.

SWITCH (real) Radius to change from linear approximations to constant approximations (with
sines and cosines as reference solutions). Constant approximations are more efficient for large radii
(typically more than 1000 fm).
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CRCWFN must be called separately for each total angular momentum and parity. The potentials must
be real and expressed in inverse powers of r. The array of coefficients COUPL must be assigned so the
potential between channels m and # is

KMAX
COUPL(m, n, k 2
Unn(r) = 3 GCLLI B Vo (1) (32)
k=1

For example the Coulomb monopole and centrifugal barrier should be entered as
COUPL(m,n,1) = Omn 20mkm , COUPL(m,n,2) = Omn lm (Im + 1), (33)

where 7,4, k.n and /,, are the Sommerfeld parameter, asymptotic wavenumber and orbital angular
momentum for channel m.

If the flag CFG = TRUE the subroutine will calculate the uncoupled Coulomb wavefunctions at Ry
and construct the arrays FCC and GCC. The Coulomb wavefunctions are evaluated using COULFG [17]
with the values of n, and /,, extracted from the array elements of COUPL. This facility is very inefficient
in a full coupled channels calculation since COULFG has to be called separately for each total angular
momentum. It is far more efficient to calculate the Coulomb functions in the calling program, and
construct the matrices FCC and GCC prior to calling CRCWFN with CFG = FALSE.

5. Test run

The test run example is for 90+ 38Ni with incident energy Ejag = 50 MeV with total angular
momentum J = 204 and positive parity. The 2+ state of *3Ni at 2.15 MeV is included which gives
four channels for each parity.

The coupling matrix elements have been calculated using the rotational model with quadrupole
deformation parameter $, = 0.15 [1]. The test run output is produced using the test program supplied
with the code.

The output includes the input information and three sets of solutions evaluated at Ry, = 25 fm:

(1) The uncoupled Coulomb functions evaluated at R;, using COULFG.

(2) The uncoupled Coulomb functions at Ry, calculated by integrating uncoupled Coulomb functions
inwards from Ry = 200 fm using CRCWFN with no coupling.

(3) The coupled Coulomb wavefunctions at Ry, integrated in from Ry, = 200 fm using CRCWFN.

Comparing (1) and (2) indicates the accuracy of the method in the uncoupled case. Comparing (1)
and (3) shows the effect of Coulomb excitation in the region Ri < r < Rout.
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TEST RUN OUTPUT

TEST RUN OUTPUT: CRCWFN

rin(1)= 26.00 fm rin(2)= 25.50 fm rout= 200.00 fm
accrcy= 0.001 switch= 1000.0 fm maxv= 100000

nch= 4 mch= 4 kmax= 4
correc= T deriv= T cfg= T
Channel L (hbar) Eta kx%2

1 20 19.95000 23.50000

2 18 20.33000 22.64000

3 20 20.33000 22.64000

4 22 20.33000 22.64000

COUPL ARRAY:
Multipolarity (k-1) =0 1 2 3

coupl(1,1,k)= 193.422 420.000 0.000 0.000
coupl(2,2,k)= 193.466 342.000 0.000 0.000
coupl(3,3,k)= 193.466 420.000 0.000 0.000
coupl(4,4,k)= 193.466 506.000 0.000 0.000

All off-diagonal elements zero

(1) standard Coulomb functions evaluated at Rin

F dF/dr G dG/dr
chl 0.4309886 -4.0062192 -1.0305832 -1.6681128
ch2 1.1037517 0.7277381 0.1938691  -4.1830650
ch3 0.2687391 4.1210217 1.0928862 -0.9830095
ché -0.9422517 2.3193083 0.6161566 3.5331269

(2) Coulomb wavefunctions integrated in from Rout with no coupling

chl 0.4309893 -4.0062213 -1.0305829 -1.6681079
ch2 1.1037543 0.7277394 0.1938684 -4.1830559
ch3  0.2587400 4.1210098 1.0928893 -0.9830087
chd -0.9422656 2.3193076 0.6161572 3.5331109

All off-diagonal elements zero

COUPL ARRAY:
Multipolarity (k-1) =0 1 2 3

coupl(1,1,k)= 193.422 420.000 0.000 0.000
coupl(1,2,k)= 0.000 0.000 1755.000 0.000
coupl(1,3,k)= 0.000 0.000 ~-1471.000 0.000
coupl(1,4,k)= 0.000 0.000 1842.000 0.000
coupl(2,1,k)= 0.000 0.000 1755.000 0.000
coupl(2,2,k)= 193.466 342.000 -725.200 0.000



coupl(2,3,k)=
coupl(2,4,k)=
coupl(3,1,k)=
coupl(3,2,k)=
coupl(3,3,k)=
coupl(3,4,k)=
coupl(4,1,k)=
coupl(4,2,k)=
coupl(4,3,k)=
coupl(4,4,k)=

J.A. Christley, IJ. Thompson / CRCWFN: coupled real Coulomb wavefunctions

0.000 0.000 1009.000
0.000 0.000 0.000

0.000 0.000 -1471.000
0.000 0.000 1009.000

193.466 420.000

0.000 0.000 915.600
0.000 0.000 1842.000
0.000 0.000 0.000
0.000 0.000 915.600

193.466 506.000

0.000
0.000

0.000

0.000

780.000 0.000

0.000

0.000
0.000

0.000

-840.400 0.000

(3) coupled Coulomb wavefunctions integrated in from Rout

channel 1
0.4400292
-0.0995963
0.0780784
~0.0899193

channel 2
0.0939876
1.0791236
0.0199875
-0.0086101

channel 3
-0.0636895
0.0896621
0.3421038
0.0824131

channel 4
~-0.0457349
0.0098792
0.0440502
-0.9774891

-3.9318441
0.1510136
-0.1385298
0.1874776

-0.1985389
0.9847477

-0.3387672
-0.0282005

-0.20568291

-0.0694513
3.9882566

-0.0464794

0.3498873
0.0071870
0.2568744
2.0327657

-1.0102250
0.0355063
~0.0328094
0.0453236

-0.0496467
0.2608582

-0.0891717
-0.0078945

~-0.0567675

-0.0167061
1.0595084

-0.01014567

0.0919090
0.0021551
0.0688819
0.5390461

-1.7060747
0.38515630
-0.3009696
0.3456246

-0.3490727
-4.0966443

-0.0654668

0.0326675

0.2455941

-0.3372511
-1.2935918

-0.3082081

0.1612075
~0.0366804
-0.1736349

3.6737999
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