next up previous
Next: Nuclear deformation: Up: b) Collective model: Previous: b) Collective model:

3.2.0.2 Coulomb deformation:

The Coulomb potential between a charge Z and a distribution of charges zi is

\begin{displaymath}
V_{C}(\mathbf{r},\xi)=\sum_{i}\frac{Zz_{i}}{\vert\mathbf{r}-\mathbf{r}_{i}\vert},\end{displaymath}

with $\xi=\{\mathbf{r}_{i}\}$

Again, this potential is expanded in multipoles, resulting

\begin{displaymath}
V_{C}^{\lambda\mu}(R,\xi)=M(E_{\lambda\mu})\frac{\sqrt{4\pi}e^{2}}{2\lambda+1}\frac{Z}{R^{\lambda+1}},\end{displaymath}

where

\begin{displaymath}
M(E_{\lambda\mu})=\sum_{i}z_{i}r_{i}^{\lambda}Y_{\lambda\mu}(\hat{r}_{i})\end{displaymath}

is the multipole electric operator.

In this scheme, the coupling potentials Uij are the matrix elements of the operator $V_{C}^{\lambda\mu}(R)$ between different excited states. In the collective model, these states are characterized by their angular momentum I and projection M. Using the Wignet-Eckart theorem

\begin{displaymath}
\langle I'M'\vert V_{C}^{\lambda\mu}\vert IM\rangle=(2I'+1)^...
...\rangle\langle I'\vert\vert V_{C}^{\lambda}\vert\vert I\rangle,\end{displaymath} (21)

where $\langle IM\lambda\mu\vert I'M'\rangle$ is just a Clebsch-Gordan coefficient and $\langle I'\vert\vert V_{C}^{\lambda}\vert\vert I\rangle$ is the so called reduced matrix element for the operator $V_{C}^{\lambda}$. These are given by:


\begin{displaymath}
\langle I'\vert\vert V_{C}^{\lambda}(R)\vert\vert I\rangle=\...
... (R\leq R_{c})\\
1/R^{\lambda+1} & (R>R_{c})\end{array}\right.\end{displaymath} (22)

The evaluation of $\langle I'\vert\vert M(E_{\lambda\mu})\vert\vert I\rangle$ depends on the model used. We consider two cases:


Table 1: Information required by FRESCO to construct the coupling potentials in a CC calculation
Coupling TYPE P(k) STR
Coulomb: rotational



next up previous
Next: Nuclear deformation: Up: b) Collective model: Previous: b) Collective model:
Antonio Moro 2004-10-27