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Abstract

In this notes I give a brief introduction to FRESCO, the coupled
channels computer code written by I.J. Thompson [5]. In particular,
some basic examples to the different types of reactions will be pre-
sented and commented. Also, the graphical interface XFRESCO will
be presented.

1 Introduction

2 Input file

e Standard input: in the original versions of fresco up to frxp.18 (1997)
fresco uses input files in formatted fortran style.Then, each line obeys
a strict format, in which a certain number of columns are reserved for
each variable. Fresco can be downloaded from: http://www.ph.surrey.ac.uk/ “phslit/

e Namelist input: since version frxx, FRESCO allows input files in
fortran namelist style, in which each variable is specified in the for-
mat variable=value. Thus, the strict formatted style in no longer used
in this version. However, to allow backward compatibility, a tool is
provided to convert from old style to new style.



e Graphical input: the enormous number of variables accepted by
FRESCO makes sometimes input files difficult to edit or to interpret,
specially to the occasional fresco user. In order to make easier the edi-
tion of input files, the graphical front-end XFRESCO [3] can be used.
In this interface the variables are organized in a logical way, according
to the physics that they describe and a short text description is supplied
for most variables. The program is distributed for free, under the GNU
license, and can be downloaded from: hittp://www.cica.es/aliens/dfamnus/famn/amoro /in

3 Optical Model (OM)

The simplest calculation that can be performed with FRESCO is the stan-
dard OM calculation. Here, the interaction between the projectile and target
is described in terms of a complex potential, whose imaginary part accounts
for the loss of flux in the elastic channel going to any other channels.

The elastic differential cross section is evaluated through the expression’

do 9
where f(0) is the scattering amplitude. The quantity v|f(0)|?/R? represents
the flux of particles elastically scattered by the target at angle 6, with v
the asymptotic velocity of the outgoing particles. This is obtained from the
asymptotic expression of the scattering wave function:

iKR

(K, R) — ™R+ f<9)eR : (2)

where K denotes the incident linear momentum of the projectile in the center

of mass system and R is the relative coordinate between projectile and target.

This in turn is calculated by solving the Schrédinger equation for the
complex potential U(R):
h2

ﬂv2 +U(R) - E|¥(K,R) =0 (3)

where 1 is the reduced mass and F is the energy in the center of mass system:
E = h*K?/2p. This equation has a solution with the form of a plane wave

IThis expression corresponds to the case in which there are no spin-dependent forces.



with relative momentum K plus outgoing scattered waves:
U(K,R) = KR 4 (K R) (4)

where y(*)(K, R) represents the set of scattered waves. Notice that in ab-
sence of the target (U(R) = 0) there are not such scattered waves and
U(K,R) = KR, Commonly, the wave function ¥(K,R) is decomposed
in partial waves, in order to separate the angular and radial parts:

¥(K,R) KLR (2L + )ity (K, R)Py(cos ), (5)

where L is the orbital angular momentum between the projectile and target
and 0 is the angle between K and R.

Replacing this solution into the Schrédinger equation (3) we get the fol-
lowing equation for the radial functions x (K, R)

o — 5 — U(R) + B| oK, R) = 0. ©
Asymptotically, the radial functions behave as
1, .

Here, we distinguish two cases:

e U(R) is a purely short range potential (i.e., decays faster than 1/R). In

this case Hy(p) — ph™)(p), where h\") is a spherical Hankel function
of the first kind [1]

e U(R) contains a long range part. In this case, H.(p) are the so called
Coulomb wave functions.

The coefficients S, are the scattering matrix (or S-matrix) elements. They
are related to the nuclear phase-shifts, §;, by:

SL = €2i5L (7)

These are very important quantities as all the information of the effect
that the target produces on the scattering wave function (and hence in the
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observables) is contained in these coefficients. Hence it is possible to write
the all the scattering observables in terms of the S-matrix elements. Notice
that in the absence of target S; = 1 for all partial waves. Even in the
presence of a point Coulomb interaction, these coefficients remains equal to
one, as the Coulomb phase-shifts are already included in the Coulomb wave
functions H; (K R). It is also important to note that, if only real potentials
are involved, the S-matrices verify |S,| = 1 and the phase shifts ¢, are
real numbers. This expresses the conservation of flux of particles (i.e., the
number of scattered particles equals the number of incident particles). On
the contrary, if the scattering potential contains an imaginary part, then
|Sp| < 1 and d;, become complex numbers. In this case, the outgoing flux of
particles is less than the incoming flux, indicating that part of the incident
flux leaves the elastic channel and goes to other channels.

Then, the calculation of the elastic cross section involves the following
steps:

e Integration of the differential equation (6) for each value of L. The in-
tegration is carried out starting from R = 0 and solving the differential
equation in steps of AR up to a certain maximum value R,,.

e For R large enough, the solution (5) obeys the asymptotic form (2).
Thus, choosing the value of R, large enough it is possible to identify
the scattering amplitude f(#) comparison of (2) and the solution (5)
for R = R,,.

10) = fo(6) + £(6)

1 Q2ior
=57 XL: (2L +1 (S — 1)Pr(cos0). (8)

e Finally, the differential elastic cross section is evaluated according to
Eq. (1).

It results obvious that the particular choice of AR and R,, depends on each
particular problem. If only short-ranged potentials are involved (eg. neutron
scattering) the value of R,, should be chosen outside of the range of the
projectile-target interaction. However, in general U(R) has both Coulomb
and nuclear parts. The Coulomb part has a long (“infinite”) range that re-
quires special treatment. Actually, in this case the asymptotic solution of (3)
does not behave as planes waves and so expression (2) is not strictly valid. In



particular, planes waves should be replaced by the so called Coulomb func-
tions, which are the solutions of the Schrodinger equation in presence of the
Coulomb potential alone. For our purposes, the important point to remind
is that in that when long-range interactions are present, the radial equations
have to be solved up to larger distances in order to “reach” their asymptotic
form.

Concerning the radial step, AR, its choice will depend mainly on the
diffusiveness of the potentials. Very abrupt or sharp potentials will normally
require an smaller step.

Finally, a maximum value of L, denoted (L,,4,) has to be chosen. In prin-
ciple, the sum in (5) goes to infinity. In practice, convergence of the scattering
observables is achieved for finite values of L,,,,. Within a semiclassical pic-
ture, the orbital angular momentum can be related to the impact parameter,
b, and the incident linear momentum by Kb ~ L + 1/2. This means that,
for a fixed incident energy, large impact parameters correspond also to large
values of the orbital angular momentum. If only short-ranged potentials are
present, these values of L do not feel the potential of the target. In presence
of the Coulomb potential, these large L values are commonly identified with
trajectories that explore uniquely the Coulomb part of the projectile-target
interaction.

The parameters discussed above are controlled by the following variables
in fresco:

- rmatch: Matching radius (R, in the discussion above)
- hcm: Radial step

- Imax: Maximum partial wave. Fresco also allows fixing the minimum par-
tial wave, through the variable LMIN. However, in normal calculations
this will be set to zero.

In the pure optical model approach only the ground state of the projectile
and targets are considered explicitly. Thus, a OM calculation only provides
the elastic scattering cross section. The loss of flux effect from the elastic
channel to the excluded channels (excitations, rearrangement reactions, etc)
is assumed to be included in the imaginary part of the optical potential.

Example 1 : *He +°® Ni at £, = 10.7MeV As an example we have
taken the reaction “He +°® Ni at Ej,;, = 10.7MeV. The radial part of the



Schrodinger equation was integrated using an step of HCM=0.1 fm and a
matching radius RMATCH=25 fm. A total of JMAX=30 partial waves was
used. Looking at the output file, it can be seen that the S-matrix is basically
one for partials waves around J = 30, indicating the convergence of the sum
of partial waves. Notice that the trace variable SMATS has been set to 2, in
order to get in the output the S-matrix values. The optical potential used
consists of two components:
i) the Coulomb potential, specified by the line:

&POT kp=1 type=0 itt=F at=58 rc=1.4 /

ii) a volume Woods-Saxon nuclear potential, with both real and imaginary
components.

&POT kp=1 type=1 itt=F p1=191.5 p2=1.37 p3=0.56 p4=23.5 p5=1.37

The variables pl,p2 and p3 (p4,p5,p6) specify the depth, radius and dif-
fusiveness of the real (imaginary) nuclear potential.

Notice that in this kind of calculations, the overlap and couplings namelists
are left empty.

p6=0.56



Example 1: Optical Model calculation

4He + 58Ni elastic scattering Ecm=10 MeV
NAMELIST
&FRESCO hcm=0.1 rmatch=25.0 rintp=0.5 jtmax=30
absend=-0 dry=F
kqmax=1
thmin=1.00 thmax=180.00 thinc=2.00 it0=1 iblock=1 pralpha=F
rmatr=0.0 beta=0.0 nnu=18 smats=2 xstabl=1 pel=1
exl=1 lab=1 lin=1 lex=1 elab=10.7
fatal=F nosol=F psiren=F /

&PARTITION namep=’ALPHA’ massp=4 zp=2 namet=’58Ni’
masst=58 zt=28 qval=0.0000 pwf=F nex=1 /

&STATES jp=0.0 bandp=1 ep=0.0 cpot=1 jt=0.0
bandt=1 et=0.0 fexch=F /

&partition /

&POT kp=1 type=0 itt=F at=58 rc=1.4 /

%POT kp=1 type=1 itt=F p1=191.5 p2=1.37 p3=0.56
p4=23.5 p5=1.37 p6=0.56 /

&pot /

&overlap /

&coupling /

OQutput code for fresco input written by xfresco v.0.1
at Sun Jan 13 01:17:29 2002



4 Inelastic excitations: coupled channels method

We consider the scattering of a projectile a by a target A. We denote this
partition by the index a, i.e., « = a + A. The Hamiltonian of the system is
expressed as:

H=H,+K,+V,, (9)

where K, is the total kinetic energy, V,, is the projectile-target interaction
and H, is the sum of the internal Hamiltonians, i.e., H, = H, + H 4.

We assume for simplicity that only one of the nucleus (let’s say, a) is
excited during the collision and that this nucleus has only one excited state.
The model wavefunction will have both elastic and inelastic components. It
can be expressed as [4]:

U= ¢a(r)Xa(R) + ¢a’(r>Xa/ (R)a (10)

where ¢,(r) and ¢,/ (r) are ground state and excited state wave functions of
the nucleus a and, hence, are solutions of the Schrodinger equation with the
Hamiltonian H,:

Ha¢a(r) = €a¢a(r)
Ha(ba/(r) = €a/¢o/(r>' (11)

The functions y,(R) and x. (R) describe the relative motion between the
projectile and target in the different internal states. The total wavefunction
U verifies the Schroedinger equation: (£ — H)¥ = 0. By projecting this
equation onto the different internal states a set of two equations is obtained:

(E — €q — Ka - Uaa)Xa(R) = Uaa’Xo/ (R)
(E — € — Ka’ - Ua’a’)XO/(R) = Ua’aXa(R) ’ (12)

where U, and U, are the so called coupling potentials. Thus, for example,
U, is the potential responsible for the excitation from the initial o state to
the final state o’/. These potentials are constructed within a certain model,
as we will see later. In the coupled channel (CC) approach, the coupled
equations (12) are solved ezactly, to give the functions y,(R) and y.(R).
If the number of states is large, the solution of the coupled equations can
be a time consuming task. In many situations, however, some of the excited



states are very weakly coupled to the ground state. For example, referring
again to the two channels case, this suggests that the inelastic component
of the total wavefunction (10) is going to be a small fraction of the elastic
one. This allows to get an approximated solution of the coupled equations
by setting to zero the inelastic component in the first equation:

(F—€y— Ko —Usa)xa(R) = 0
(E — €y — Koy — Uo/o/)Xa’(R) = Uo/ocXOé(R) . (13)

Thus, the first equation can readily solved. The resulting function y, (R )
is then inserted into the second equation, allowing the calculation of y,. This
is called 1-step distorted wave distorted wave Born approximation (DWBA).
An iterative procedure can be then applied by inserting the calculated y,.
into the first equation in (12) to get an improved function y,. Continuing this
procedure, we can get 2-step, 3-step, etc DWBA. When the couplings between
channels are weak, the DWBA should approach to the full CC solution.
However, when couplings are strong convergence problems can be presented.

As in the pure OM calculation, a separation between the angular and
radial parts is made in the set of coupled equations (12). This requires the
expansion of the potentials U,,(R) and U, (R) in multipoles. For example:

Uaa(R) = ; Uéa(R)YAM(R) (14)

where ) is called multipolarity. In principle the expansion above runs from

= 0 to A = oo. However, in practice, only the first few multipoles play
a significant role in the scattering process. With the variable IP1 (in the
namelist &couplings/) we set the maximum value of \. The specific form of
the coupling potentials depend on the adopted model.

The resolution of the coupled equations (12) is significantly simplified
if the distorted wavefunctions are separated into their radial (f,(R)) and
angular parts. Thus, inserting the multipole expansion (14) into the coupled
set of equations one gets:

[Ea - aL(R) - Ua(R>] fa(R> = Z Ua/\a/(R)fa/(R>

[Bor = Twi(R) = Un (R)] fa(R) = > _Udu(R)fa(R) (15)



with

R (d> L(L+1)
TaL(R) = _ﬂ (dR2 - R2 °

a) Cluster model:

Some nuclei permit an approximate description of their structure in terms
of cluster. This is the case of “Li, which is sometimes modeled as two inert
clusters *He+2H. Other examples are SB—%B+n, 'Be—1Be+n, etc.

For such systems, Coulomb and nuclear excitations can be interpreted and
calculated in terms of the interactions of each cluster and the target. For
example, consider that the projectile is composed of two fragments, denoted
1 and 2. Then:

Usa(R) = [ drdiy(r)U(r, R)a(r) (16)
Uta(R) = [ drg,(0)U(x, R)gu(r) (17)
where
U(I‘, R) = Ul(Rl) + UQ(RQ) (18)
with
RlzR—i—&r; R2:R—Lr (19)
my + Mo mi + Mo

Previous to the solution of the coupled equations, FRESCO has to eval-
uate the coupling potentials U,, and U,,. This in turn require the internal
wavefunctions ¢, (r) and ¢, (r).

Example 2: °F +28Si at F;,, = 60MeV As an example we consider the
reaction F +22Si at I, = 60 MeV. Two states are explicitly considered for
the F nucleus, namely the ground state (J™ = 1/2") and the first excited
state (J™ = 5/2%, e = 0.2MeV), as illustrated schematically in Fig. 2. For
shortness, and using our previous notation, these states will be denoted «
and o/, respectively. In order to account for the couplings between these
states, a triton-oxygen cluster structure is assumed for this nucleus. In this
example, these couplings are constructed assuming cluster model. We use
from here after the notation:

17F N 160 +3H

composite — core + valence

10



In order to make fresco know which nuclei are the core and the fragment
an extra partition is defined. Then, apart from the '"F +2® Si partition, a
partition with the core nucleus as a projectile is defined, and a target which
is the original target (*®Si) plus the fragment (*H). This corresponds to the
input line:

PARTITION namep=°16-0’ massp=16 zp=8

namet=’31-P’ masst=31 zt=15 qval=6.1990 pwf=T nex=1 /

The projectile-target interaction is then written as

U19F7zssj(r> R) = UngsSj(Rl) + UlﬁOgsSj(RQ)' (20)

Notice that the USH,%Si and U16O,2SSi depend on different coordinates.
The U19F,2BSi interaction can be written as a function of the internal coor-
dinate between the clusters, r, and the center of mass coordinate R. Due to
the dependence on the coordinate r, this potential can produce excitations
between the different states of the °F nucleus.

The relevant information is given in a set of overlap namelists. For ex-
ample, for the ground state wavefunction the following overlap namelist is
provided:

OVERLAP knil=1 kind=0 in=1 icl=1 ic2=2 nn=4 sn=0.5 1=0

j=0.5 kbpot=3 be=11.7300 isc=1 /

The meaning of the variables is the following:

- knl: index to label this overlap, as it will be have to be referenced later,
in a coupling namelist.

- kind: is the kind of coupling order for angular momenta. Typically we
will use kind=0.

- in=1: to specify that this state corresponds to the projectile (for the target
in=2).

11



- icl and ic2 specify the partition numbers for the core and the composite
nuclei. The order is irrelevant, so in our case we can set icl=1 and
ic2=2, or ic1=2, ic2=1.

- nn, 1, jn: are the quantum numbers for the single-particle state we assume
that the triton occupies a 4s; /5 single-particle state and so: nn—4, (=0
and j=0.5.

- sn: spin of the fragment, in this case, the triton.

- kbpot: index of the potential that binds the fragment (triton) to the core
(oxygen).

- be: binding energy of the triton in the F nucleus.

- isc: the type=isc part of the potential kbpot is varied in order to reproduce
the binding energy. In this example isc=1, and so the depth of the
nuclear potential is taken as a free parameter.

An analogous overlap namelist is used for the overlap corresponding to the
excited state.

Finally, in order to set up the coupled equations it is necessary to specify
the couplings between the different channels. In this example, we have to
tell FRESCO that we want to couple the ground and excited state in the 1F
nucleus. This is done with the namelist:

COUPLING icto=1 icfrom=2 kind=3 ipl=4 ip2=1 p1=6.0 p2=5.0/

The meaning of the variables is the following:

- icto: index of the partition containing the composite nucleus (1°F).
- ictfrom: index of the partition containing the core nucleus (1°0).

- kind: the flexibility of FRESCO allows many types of couplings: single-
particle excitations, zero-range transfer, finite-range transfer, collective
excitations,... With the variable kind we specify the type of coupling. In
our example, it corresponds to single-particle excitation of the projectile
(kind=3).

12



- ip1: IP1=4 means that the multipoles A = 0, ..., 4 will be considered.

- ip2: to specify if the coupling potentials U, and U, will include only the

- pl:

- p2:

nuclear potential (IP2=1), the Coulomb (IP2=2) or both (IP2=0). In
our example, IP2=1, and thus only the nuclear part of the potentials
U(*H,?8Si) and U('90,* Si) will be considered to construct the folding
potentials. This does NOT mean that the Coulomb potential is ignored
in the calculation, as the potential KP=1 contains the monopole central
potential between the projectile and the target. Thus, with IP2—=1
we just suppress excitations between the states o and o’ due to the
Coulomb interaction.

potential index KP for the valence-target interaction. In our example,
this is a (complex) optical potential describing the 3H +28 Si elastic
scattering.

potential index KP for the core-target interaction. In our example,
this is the optical potential U(60,?® Si).

Finally, it is necessary to explicitly defined the couplings between different
states. This permits a great flexibility as one can check the effect of specific
couplings, or omit those couplings that will have very small effect, thus saving
computational time.

&CFP

&CFP

in=1 ib=1 ia=1 kn=1 a=1.000 /

in=1 ib=2 ia=1 kn=2 a=1.000 /

The first line gives the amplitude for the overlap (!*F|'%0), with 'F in
its ground state. The second line is for the (!YF*|'°0O) overlap, with F in
its excited state (see section 5).

The meaning of the variables for the first line is:

- in:

- ib:

to indicate that the overlap is for the projectile (in=1) or target (in=2)

index of state within the projectile that contains the projectile. In
this example, the composite is °F, which appears in partition 1. The
ground state appears in the first state defined within this partition and
so IB=1.

13



- ia: index of excitation state of core nucleus. In our case, only one state is
specified for the core and so [A=1.

- kn: is the index of the form factor that provides the wave function for the
overlap ("F|'°0O).

- a: Is the spectroscopic amplitude for the overlap. In other words, it is the
single-particle fraction. In our example, we consider pure single-particle
states, and so A=1.

There are also several important variables within the FRESCO namelist
which control the way in which the set of coupled equations are solved:

- iblock: Is the number of states (starting from partition 1) that will be
coupled exactly. In this example we want to couple the two states of
the °F nucleus and thus IBLOCK—2.

- it0, iter: When the variable IBLOCK is less than the number of states,
FRESCO interprets that the rest of states that will not be solved ex-
actly, will be included by iterations. For these states, the number of
minimum and maximum iterations are controlled by means of the vari-
ables ITO and ITER. The former is the minimum number of DWBA
steps that will be carried out. After ITO steps FRESCO checks the dif-
ference between successive S-matrix elements and compares with the
variable IPS. If the difference is smaller that IPS percent, the calcula-
tion finished. If not, it continues the iterations up to a maximum of
ITO iterations.

14



S/2+ E=0.2 MeV

CC

1/2+ E=0.0 MeV

19F

Figure 1: Energy levels for the '°F considered in the CC calculation.

Example 2: CC with cluster form factors

Test run: CC calculation 19F+285i. Cluster form factors
NAMELIST

&FRESCO hcm=0.100 rmatch=25.000 rintp=0.50

hnl1=0.100 rnl1=3.00 centre=0.00 jtmin=0.0 jtmax=80.0
absend=0.0100 dry=F thmin=0.00 thmax=60.00

thinc=2.50 ips=0.0000 iter=1 iblock=2 pralpha=F

nnu=30 chans=1 listcc=2 smats=1 pel=1 exl=1

lab=1 1in=1 lex=1 elab=60.0

fatal=T nosol=F psiren=F unitmass=1.007335
finec=137.03599 /

&PARTITION namep=’19-F’ massp=19 zp=9 namet=’28-SI’
masst=28 zt=14 qval=0.0000 pwf=T nex=2 /

&STATES jp=0.5 bandp=1 ep=0.0000 cpot=1 jt=0.0
bandt=1 et=0.0000 fexch=F /

&STATES jp=2.5 bandp=1 ep=0.2000 jt=0.0 et=0.0000
fexch=F /

&PARTITION namep=’16-0’ massp=16 zp=8 namet=’31-P’
masst=31 zt=15 qval=6.1990 pwf=T nex=1 /

&STATES jp=0.0 bandp=1 ep=0.0000 jt=0.5 bandt=1
et=0.0000 fexch=F /

&partition /

&POT kp=1 itt=F ap=28.000 at=19.000 rc=1.200 /

15



&POT kp=2 itt=F ap=31.000 at=16.000 rc=1.350 /

%POT kp=2 type=1 itt=F p1=31.200 p2=1.450

p3=0.470 p4=15.100 p5=1.270 p6=0.310 p7=0.000 /
%POT kp=2 type=3 itt=F p1=0.750 p2=1.240 p3=0.370 /
&POT kp=3 itt=F ap=19.000 at=0.000 rc=1.250

ac=0.650 /

&POT kp=3 type=1 itt=F p1=115.000 p2=1.250

p3=0.650 /

%POT kp=3 type=3 itt=F p1=6.300 p2=1.250 p3=0.650 /
&POT kp=4 itt=F ap=31.000 at=0.000 rc=1.250

ac=0.650 /

%POT kp=4 type=1 itt=F p1=99.000 p2=1.250

p3=0.650 /

%POT kp=4 type=3 itt=F p1=6.300 p2=1.250 p3=0.650 /
&POT kp=5 itt=F ap=28.000 at=0.000 rc=1.200 /

%POT kp=5 type=1 itt=F p1=27.000 p2=2.425

p3=0.460 p4=11.660 p5=2.145 p6=0.238 p7=0.000 /
&POT kp=6 itt=F ap=28.000 at=0.000 rc=1.250

ac=0.650 /

%POT kp=6 type=1 itt=F p1=160.000 p2=1.070

p3=0.720 p4=37.000 p5=1.350 p6=0.880 p7=0.000 /
&pot /

&OVERLAP knl=1 icl=1 ic2=2 in=1 nn=4 sn=0.5 j=0.5
kbpot=3 be=11.7300 isc=1 nam=1 ampl=1.0000 /
&OVERLAP kn1=2 icl=1 ic2=2 in=1 nn=3 1=2 sn=0.5
j=2.5 kbpot=3 be=11.5300 isc=1 nam=1 ampl=1.0000 /
&overlap /

&COUPLING icto=1 icfrom=2 kind=3 ipl=4 ip2=1
p1=6.0000 p2=5.0000 jmax=0.00 rmax=0.0 /
&CFP in=1 ib=1 ia=1 kn=1 a=1.000 /

&CFP in=1 ib=2 ia=1 kn=2 a=1.000 /

&cfp /

&coupling /
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b) Collective model:

Within a collective model (eg., vibrational, rotational,...) excitations are
interpreted in terms of the deformation of the charge or mass distribution of
the nucleus.

In the previous example, the coupling terms U, appearing in the coupled
equations (12) are determined within a cluster model. In some systems,
the excitation spectrum is better described within a collective model. The
excitation of the nucleus is then described in terms of deformed potentials.
These can be expressed as a change in the radius at which we evaluate the
optical potentials, the change depending on the relative orientations of the
radius vector to the intrinsic orientation of the nucleus.

Coulomb deformation: The Coulomb potential between a charge Z and
a distribution of charges z; is

ZZZ‘
Ve(r,§) = Z r—r|

Again, this potential is expanded in multipoles, resulting

Vare: 7

VC)‘\H(Ru §) = M(EA”>mW’

where
M(EA;L) = Z Zirz‘)\YA;L(fi)

is the multipole electric operator.

In this scheme, the coupling potentials U;; are the matrix elements of the
operator V2*(R) between different excited states. In the collective model,
these states are characterized by their angular momentum 7 and projection
M. Using the Wignet-Eckart theorem

(' M|V IM) = (21 + D)V (IMAulI M) (VA |T), (21)

where (IMMu|I'M’) is just a Clebsch-Gordan coefficient and (I'[|V2||I) is
the so called reduced matriz element for the operator V2. These are given
by:
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The evaluation of (I'||M(E),,)||) depends on the model used. We con-
sider two cases:

e Rotational model:
(I M(E|I) = V21 + L(TKXO|I'K) (x| M (Ex)lx),  (23)

where K is the rotational band and (x|M(Ex)|x) = M,(EX) is the
expected value of the electric operator M(E)) in the intrinsic state
of the deformed nucleus. The only information required by FRESCO
are the expentation values (y|M(FE\)|x), which are assigned to the
variables P()\):

PA) = (XIM(Exo)[x) (24)

e Experimentally, (I'||M(E,,)||/) can be directly related to the re-
duced transition probability B(EX; I — I'):

1
B(ENT — Iy = ——|(I'||[M(EN)||I)]? 25
(EXT = 1) = = (T IMBN D) (25)
for the off-diagonal matrix elements. For quadrupole deformations, the
diagonal matrix elements are related to the experimental quadrupole
moment by:

Qo = [ o L+ ) BRI MBI, (26)

for the diagonal reduced matrix elements. Each matrix element is pro-
vided in a separated &step/ namelist.

ib: final state with angular momentum [’

ia: initial state with angular momentum /

k: multipolarity A

str: strength of the coupling factor

I—1'+|1-1'|
2

STR = M(EX) = (—1) (I||M(EM|IT) = +£1/(21 + 1)B(EX T — I')

(27)

18



| Coupling [ TYPE | P(k) | STR

Coulomb: rotational | 10,11 M, (k) -

Coulomb: general | 12,13 M, (k M(Ek) = (=131 || M(Ek)||I))
Nuclear: rotational | 10,11 | DEF (k) = Rfk -

Nuclear: general | 12,13 | DEF(k) = RB, | RDEF(k) = (—1)—"2—(I'|6||])

Table 1: Information required by FRESCO to construct the coupling poten-
tials in a CC calculation

Nuclear deformation: If U(R) is the potential shape to be deformed, the
deformed nuclear potential can be constructed as

V((,R)=U(R-6(R)), (28)

where R’ are the angular coordinates (6, ¢) referred to the intrinsic reference
frame. The function ¢ is normally expanded in multipoles:

S(R) =" 0:\Y(R) (29)

As in the case of cluster form factors, it is convenient to expand the cou-
pling potential V in spherical harmonics, giving rise to the radial multipoles
V3 (R), whose reduced matrix elements are given by

U'l|ox[|T) dU(R)

IIVAR)IT) =

Vi T (30)
with the same shape for all nuclear multipoles A > 0.
The values of (I’||0,]|) are model dependent:
e Rotational model:
(I'lloA11) = V21 + L{ITKXOI'K) (x]6x]x), (31)

where K is the projection of the angular momenta [ and I’ within a
rotational model and (x|d,|x) is the expectation value of the operator
4, in the internal state of the deformed nucleus. Even more, if the mass
and charge distributions coincide:

MBI, (32)

') = ———
() = 5
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where R, is an average radius. According to (23) and (31) and the
previous relation holds also for the matrix elements in the intrinsic
state:

(Il = “31 (dIM(ED1), (33)

3ZeR,

In the rotational model, it is not necessary to provide FRESCO with the
all matrix elements above. The only information required by FRESCO
are the deformation lengths ¢,, which are assigned to the variables
P(\):

P(A) = (x]dr|x) = Robh, (34)

where 3, the deformation parameters. Note that within the rotational
model, the nuclear and coulomb matrix elements are related by:

37 B\ RN

M, (BX) = =2

(35)

e General case: In general, if we are not within a specific model, there is
not a simple relation between the matrix elements connecting different
states [ and I’ and so it is necessary to give them explicitly for each pair
of excited states. In particular, FRESCO uses the matrix elements:

I—I'4|1-1'|

RDEF(\I —T) = (1) = (I||6\||])
= (=) VRT F LITENOIE) (x|63x)
= (1) TV FLUIKNI'K) By R, (36)

—~

This information is provided to fresco through the namelist &step/,
which contains the variables?:

ib: final state with angular momentum [/’

ia: initial state with angular momentum /

k: multipolarity A

str: strength of the coupling factor RDEF(\; 1 — I')

2In the f77 version, this information is given by means of cards 11.
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S/2+ E=0.2 MeV

CC

1/2+ E=0.0 MeV

19F

Figure 2: Energy levels for the °F considered in the CC calculation.

Notes:

e Inclusion of I — [’ transition in the table of couplings, does not include
automatically I’ — I. We then need two &step/ namelist in order both
couplings are considered.

e The values of M(Ek) must be entered in units of e fm*. This means
that the reduced transition probabilities, B(E\) are in units of e? fm?*.
Notice that some databases use different units. For instance, the ENSDF
database at NNDC [2] uses for the transition probabilities the units
e?b*. Frequently, transition probabilities are given in Weisskopf units,
which are estimates of transition strengths for a single proton in a uni-
form charge distribution 2.

e The transition probability for an electric radiation is roughly two or-
ders of magnitude larger than for an equivalent magnetic transition,
meaning electric transitions are favored, AA%B << 1. The probability

is also inversely proportional to the multipolarity meaning higher mul-

tipolarities are slower,A(Al(Jg)l) << 1. The effect of this is that while an

E2 transition can compete with an M1, the M3 and higher orders are

negligible. Also, an M2 cannot compete with an E1, which is therefore

generally described as a ‘pure’ dipole.

e Fresco gives also the possibility of defining the couplings to excited
states through the &coupling/ and &inel/ namelists. As an ex-
ample, consider the reaction ®Li+2%®Pb in a two state model of ®Li,
including the g.s. (2%) and its excited state ( 17). Using the values
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Transition rate | Weisskopf estimate |
T(EL)-1.587 10°E° B(EL) || B(EL)—6.446 10 A2

T(E2)=1.223 10°E° B(E2) | B(E2)=5.940 10-2A%/3
T(E3)=5.69810°E" B(E3) B(E3)=5.940 10242
T(E4)=1.694 10~1E~9 B(E4) | B(E4)=6.285 10-24%/3
T(E5)=3.451 10~ ''E' B(E5) | B(E5)=6.928 10-2A10/3

T(M1)=1.779 101 E® B(M1) B(M1)=6.446

T(M2)=1.371 107 E° B(M2) B(M2)=1.650A%?
T(M3)=6.387 E7 B(M3) B(M3)=1.650 AY/?

T(M4)=1.89910"°E° B(M4) B(M4)=1.746 A2

T(M5)=3.868 10 SE" B(M5) | B(M5)—1.924 A5/

Table 2: Transition probabilities T(sec-1) expressed by B(EL) in 2 fm?* and
B(ML) in (;24)? fm*~2. E= Gamma-ray energy, measured in MeV.

B(E2;2" — 17) = 30¢e*fm* and the deformation length § = 1.75fm
from the literature the fresco input looks like:

8Li+208Pb quasielastic

NAMELIST

&FRESCO hcm=0.1 rmatch=100 rintp=0.5 hnl=0.033
rnl=3.00 centre=0.00 jtmax=100 absend=0.001 dry=F
jump(1:6:1)=0 0 0 0 0 O jbord(1:6)=0 0 0 0 0.0 0.0
thmin=2.00 thmax=-180.00 thinc=2.00 ips=0.01 iblock=2
pralpha=F pade=1 nnu=24 chans=1 smats=2 xstabl=1
pel=1 exl=1 lab=1 lin=1 lex=1 elab=34.404

nlab(1:3)=0 0 0 fatal=F nosol=F psiren=T
unitmass=1.000 finec=137.03599d0 /

&PARTITION namep=°Li-8’ massp=8 zp=3 namet=’Pb-208’
masst=207.977 zt=82 qval=0.0000 pwf=T nex=2 /
&STATES jp=2.0 bandp=1 ep=0.000 kkp=1 cpot=1
jt=0.0 bandt=1 et=0.000 fexch=F /

&STATES jp=1.0 bandp=1 ep=0.981 kkp=1 cpot=1
jt=0.0 copyt=1 bandt=1 et=0.000 fexch=F /

&partition /
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&POT kp=1 itt=F ap=8 at=208 rc=1.200 /

&POT kp=1 type=12 shape=10 itt=F p1=0.000 p2=10.
p3=0.000 p4=0.000 p5=0.000 p6=0.000 /

&STEP ib=2 ia=1 k=2 str=12.24 /

&STEP ib=1 ia=2 k=2 str=12.24 /

&STEP ib=1 ia=1 k=2 str=-5.976 /

&STEP ib=2 ia=2 k=2 str=5.477 /

&step /

%POT kp=1 type=1 itt=F p1=60 p2=1.3 p3=0.65
p4=150 p5=1.3 p6=0.60 /

%POT kp=1 type=12 shape=10 itt=F p1=0.000 p2=1.75
p3=0.000 p4=0.000 p5=0.000 p6=0.000 /

&STEP ib=2 ia=1 k=2 str=2.1433 /

&STEP ib=1 ia=2 k=2 str=2.1433 /

&STEP ib=1 ia=1 k=2 str=-1.0458 /

&STEP ib=2 ia=2 k=2 str=0.9585 /

&step /

&pot /
&overlap /
&coupling /

Output code for fresco input written by xfresco v.1.0
at Mon Sep 23 16:03:22 2002

Alternatively, we can define a &coupling/ namelist with kind=1 (excita-
tions of projectile):

\&COUPLING icto=1 icfrom=1 kind=1 ip1=8 /

Here, icto=icfrom indicates the partition where excitations are defined.
Then, a &inel/ namelist is included for each coupling. For instance,

&INEL ib=2 ia=1 k=2 no=2 kp=1 a=12.24 /
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that state ia=1 (i.e., the g.s.) is coupled to state ib=2 (the excited state)
with multipolarity k=2. The coupling will be generated using the component
no=2 of potential kp=1 (which corresponds to a deformed coulomb poten-
tial). Note that this amplitude @ is to be multiplied to the value of p(k)
in the deformed potential. The product of both quantities is supposed to
give the reduced matrix element M(Ek; I — I') (for Coulomb couplings) or
RDEF(k;I — I') (for nuclear couplings)

8Li+208Pb quasielastic

NAMELIST

&FRESCO hcm=0.1 rmatch=100 rintp=0.5 hnl=0.033
rnl=3.00 centre=0.00 jtmax=100 absend=0.001 dry=F
jump(1:6:1)=0 0 0 0 0 O jbord(1:6)=0 0 0 0 0.0 0.0
thmin=2.00 thmax=-180.00 thinc=2.00 ips=0.01 iblock=2
pralpha=F pade=1 nnu=24 chans=1 smats=2 xstabl=1
pel=1 exl=1 lab=1 lin=1 lex=1 elab=34.404

nlab(1:3)=0 0 0 fatal=F nosol=F psiren=F
unitmass=1.000 finec=137.03599d0 /

&PARTITION namep=°Li-8’ massp=8 zp=3 namet=’Pb-208’
masst=207.977 zt=82 qval=0.0000 pwf=T nex=2 /
&STATES jp=2.0 bandp=1 ep=0.000 kkp=1 cpot=1
jt=0.0 bandt=1 et=0.000 fexch=F /

&STATES jp=1.0 bandp=1 ep=0.981 kkp=1 cpot=1
jt=0.0 copyt=1 bandt=1 et=0.000 fexch=F /

&partition /

%POT kp=1 itt=F ap=8 at=208 rc=1.200 /
&POT kp=1 type=12 shape=10 itt=F p2=1 /
&step /

%POT kp=1 type=1 itt=F p1=60 p2=1.3 p3=0.65
p4=150 p5=1.3 p6=0.60 /

&POT kp=1 type=12 shape=10 itt=F p2=1 /
&step /

%POT kp=2 itt=F ap=8 at=208 rc=1.200 /
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%POT kp=2 type=1 itt=F p1=60 p2=1.3 p3=0.65
p4=150 p5=1.3 p6=0.60 /

&POT kp=2 type=12 shape=10 itt=F p2=1 /
&step /

&pot /
&overlap /

&COUPLING icto=1 icfrom=1 kind=1 ip1=8 /
&INEL ib=2 ia=1 k=2 no=2 kp=1 a=12.24 /
&INEL ib=1 ia=2 k=2 no=2 kp=1 a=12.24 /
&INEL ib=1 ia=1 k=2 no=2 kp=1 a=-5.976 /
&INEL ib=2 ia=2 k=2 no=2 kp=1 a=5.477 /
&INEL ib=2 ia=1 k=2 no=3 kp=2 a=2.1433 /
&INEL ib=1 ia=2 k=2 no=3 kp=2 a=2.1433 /
&INEL ib=1 ia=1 k=2 no=3 kp=2 a=-1.0458 /
&INEL ib=2 ia=2 k=2 no=3 kp=2 a=0.9585 /
&INEL/

&coupling /

Output code for fresco input written by xfresco v.1.0
at Mon Sep 23 16:16:16 2002

Example 3: 0 42 Pb inelastic scattering To illustrate the use of
collective form factors in fresco, we have selected the inelastic scattering of
160 1208 Ph at 80 MeV. In this example, some excited states of the projectile
and target are included. In order to account for the excitations of both nuclei,
some deformed potentials are defined. The deformation of the 1°QO is treated
within a rotational model whereas those of the 2*Pb are treated without
assuming any model, by supplying the relevant matrix elements.

After the central Coulomb component of the KP=1 potential, the follow-
ing deformed potential is included:

\&POT kp=1 type=10 itt=F p1=0.000 p2=0.0 p3=37.6" /
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- type=10: indicates the projectile is being deformed and a rotational
model is to be assumed.

- p3: corresponds to M, (E3) = (x| M(Es0)|x)

Also, the Coulomb potential kp=1 is deformed to coupling the target excites
in a model independent way:

\&POT kp=1 type=13 shape=10 itt=F p1=0.000

p2=54.45 p3=815.0 p4=0.00 p5=0.2380e+5 p6=0.00 p7=0.00 /

- type=13: indicates that the target nucleus is going to be deformed and
that relevant matrix elements are to be supplied explicitly.

- pl to p5: this is informative only, as the matrix elements will be given
explicitly by means of &step/ namelists, such as:

\&step ib=1 ia=3 k=3 str=815.0 /

in which the state number ia = 1 to coupled to the state ib = 3 by means
of the octupole Coulomb operator (k = 3) and with strength str = 815. This
corresponds to (B(E3;0 — 3) = 664225 e* fmS.

After these step namelists, the central nuclear potential is defined using
type=1 potentials. As for the Coulomb potential, this is later on deformed
using a rotational model:

\&POT kp=1 type=10 shape=11 itt=F p3=2.15 /

This will couple the states of the projectile using the octupole Coulomb
operator and the deformation length p3=2.15. This value is consistent with
our assumption of a rotational model for 0 and the value of M, (E3) used
for the Coulomb part. As it can be easily checked, the values of (3; and
M, (E3) are related by the relation (35).

Then, the states or the target are coupled in a model independent way
using a type=13 potential:
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\&POT kp=1 type=13 shape=10 itt=F p2=54.45 p3=815.0
p5=0.2380e+5 /

- p2,p3 and p5 are, according to Eq. (34), the deformations lengths Ry/5).

The remaining lines define by means of &step/ namelists, the matrix ele-

ments.
&STEP ib=1 ia=3 k=3 str=0.8000
&STEP ib=3 ia=1 k=3 str=0.8000
&STEP ib=1 ia—4 k=2 str=0.4000
&STEP ib=4 ia—1 k=2 str=0.4000
&STEP ib=1 ia=>5 k=5 str=0.4680
&STEP ib=5 ia=1 k=5 str=0.4680
&step /

o T T T T T
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Example 3: CC with collective form factors

160+208Pb 80 MeV
NAMELIST

&FRESCO hcm=0.100 rmatch=17.000 rintp=0.50

hn1=0.033 rnl=3.00 centre=0.00 jtmin=0.0 jtmax=100.0
absend=0.1000 dry=F jump(1:6:1)=0 0 0 0 0 O jbord(1:6)=
00000.00.0thmin=80.00 thmax=180.00

thinc=2.50 cutl=0.00 cutr=0.00 cutc=0.00 ips=0.0100
iter=18 iblock=2 pralpha=F pade=1 nnu=24

erange=1.2000 dk=0.0200 chans=1 smats=2 veff=1 kfus=20
pel=1 exl=1 lab=1 lin=1 lex=1 e1ab=80.0000

nlab(1:3)=0 0 0 fatal=T nosol=F psiren=T
unitmass=1.000000 finec=137.03599 /

&PARTITION namep=’16-0’ massp=15.9949 zp=8
namet=’PB-208’ masst=207.9770 zt=82 qval=0.0000 pwf=T
nex=5 /

&STATES jp=0.0 bandp=1 ep=0.0000 cpot=1 jt=0.0
bandt=1 et=0.0000 fexch=F /

&STATES jp=3.0 bandp=-1 ep=6.1300 cpot=1 jt=0.0
copyt=1 et=0.0000 fexch=F /

&STATES jp=0.0 copyp=1 ep=0.0000 cpot=1 jt=3.0
bandt=-1 et=2.6100 fexch=F /

&STATES jp=0.0 ep=0.0000 cpot=1 jt=2.0 bandt=1
et=4.0700 fexch=F /

&STATES jp=0.0 ep=0.0000 cpot=1 jt=5.0 bandt=-1
et=3.2000 fexch=F /

&partition /

&POT kp=1 itt=F ap=208.000 at=16.000 rc=1.200 /

&POT kp=1 type=10 itt=F p3=37.600 /

&POT kp=1 type=13 shape=10 itt=F p2=54.45 p3=815.0 p5=0.2380e+5 /
%STEP ib=1 ia=3 k=3 str=815.0 /

&STEP ib=3 ia=1 k=3 str=815.0 /

&STEP ib=1 ia=4 k=2 str=54.45 /

&STEP ib=4 ia=1 k=2 str=54.45 /
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&STEP ib=1 ia=5 k=5 str=0.2380E+05 /
&STEP ib=5 ia=1 k=5 str=0.2380E+05 /
&step /

&POT kp=1 type=1 shape=1 itt=F p1=0.000 p2=1.179

p3=0.658 p4=10.000 p5=1.000 p6=0.400 /

&POT kp=1 type=-1 itt=F p1=60.500 p2=1.179

p3=0.658 /

&POT kp=1 type=10 shape=11 itt=F p3=2.150 /

&POT kp=1 type=13 shape=11 itt=F p2=0.400 p3=0.800 p5=0.468 /
&STEP ib=1 ia=3 k=3 str=0.8000
&STEP ib=3 ia=1 k=3 str=0.8000
&STEP ib=1 ia=4 k=2 str=0.4000
&STEP ib=4 ia=1 k=2 str=0.4000
&STEP ib=1 ia=5 k=5 str=0.4680
&STEP ib=5 ia=1 k=5 str=0.4680
&step /

NN NN NN

&pot /
&overlap /
&coupling /
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5 DWBA

Let consider the transfer reaction
A+b—a+B (A=a+v, B=b+v), (37)

When the coupling to intermediate channels is weak, it is reasonable to
evaluate the transition amplitude in Born Approximation (BA). In the case
of rearrangement reactions there are several ways to describe the interaction
between the different fragments, one for each partition. For example, if
we choose to describe the scattering in terms of the nuclei of the entrance
partition, the projectile target interaction will be written as

Vab = Vi + U (38)

The interaction V,,, is the the potential which binds the v valence particle
to the b core. In general, it will be described as a real potential (for which we
use the notation V). The potential Uy, is the optical potential describing the
scattering between b and v. It will typically contain both real and imaginary
parts (we use the letter U). In this representation, known as prior form, the
transition amplitude for the transfer process is given by

Torior = (X5 0a05|Vt + Uap — UalxS" da01)
= [ dRaARG (Ro) Lo (R RO (Ra), (39)
with
Iﬁa(Rﬁv Roc) - (¢a¢B|%b + Uab — Ua‘QSAQSb) (40)

Analogously, for the exit channel: V,z = V,, + Uy. In this case, the
expression (39) reduces to:

TPOSt - <X(ﬁ+)¢a¢B’Vav 4+ Uwp — Uﬁ’XEx+)¢A¢b>' (41)

where, Up is the optical potential describing the elastic scattering in the exit
channel.

In either prior and post form the differential cross section is calculated
as:

do_ pppa (@) IT(ks, ko) (42)



According the previous expressions a basic ingredient required to calcu-
late the transfer amplitude in the prior DWBA approximation is are the
internal wave functions for the initial (¢4, ¢3) and final (¢,, ¢5) nuclei. In
this scheme, the valence particle v is bound to the b core to give the compos-
ite B. In the simplest picture, the valence particle particle can be considered
a pure single-particle state. This means that, within in this extreme model,
there is only one possible configuration of the core and the valence particle
to give the nucleus B and thus, the wave function for this nucleus can be
written as:

B1(&r) = [04(6) @ e ()] (43)
In a more realistic model, however, the state of the composite contains

components of many single-particle states coupled to all possible core states
and thus, the wave function ¢?, M(f ,1) is built as a superposition of the form:

7 T Z £sj { ® 9045]( ﬂJ]V[’ (44)

IZ]

where the coefficients A/, are the so called coefficients of fractional parentage
(cfp) or spectroscopic amplitudes, and their square moduli S7;; = [A}/;|* the
spectroscopic factors. The spectroscopic factor Sgsj can be regarded as the
probability of finding the valence particle v in a single particle state /, s, j
coupled to the core with spin /. The quantity ng is the number of nucleons
(or clusters!) in the composite system that are identical to that transferred.
The factor 1/,/np is introduced just for convenience.

Example: the ground state of the 2*Bi nucleus can modeled to a
good approximation as a valence proton coupled to the core 2°°Pb.
Due to the double close shell nature of the core, the valence proton
can be regarded as a nearly pure single-particle state, occupying
the 1hg/, orbital. Then, we have: I = 0, J = 9/2, (s,(,j) =
(1/2, 5, 9/2) and S/, ~ 1. Moreover, as there is only one particle
with this configuration, ng = 1 in this case.

Notice that the integral /5,(Rgs, R,) involve the overlap between the com-
posite and core wave functions. Using the expansion (44) the integral on
the core internal variables £ can be explicitly performed giving just unity by
normalization.

(08 (6.1),01(9)) = [ deot(& r)o} =—Z Y ouni(r)  (45)
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The bound wave functions ¢y (r) obey the Schrodinger equation®:
[T+ Vip(r) + € — E] pys5(r) = 0, (46)

where ¢ is the binding energy of the valence particle.

The information required by FRESCO to construct the wave functions
is provided in the section of form factors, which corresponds to the namelist
&overlap/ in the fortran 90 version. However, the cfp’s and the valence-
target and core-target potentials are given in the couplings section, through
the &coupling/ namelist.

It is important to note that the calculation of the transition amplitude
involves the integration in the channel coordinates R, and Ry (see Fig. 3),
which, after the integration on the angular coordinates, becomes a integral
in R, and Rjz. Then, the coupled channels equations becomes:

Ba~ T Re) = Ual R FalRa) = [ Unol(Rus Rs)fo(Bo)iRs

Rnl,

[Es — Tpr(Rp) — Us(Rp)] fs(Rs) = A Upa(Ra; Rg) fo(Ra)d Ry (47)

The integrals

Rm
S(Rs) = [ Usa(Rar Ro)fa(Ra)d R,

are evaluated in steps of HCM and up to RMATCH. Previously, Fresco has to
evaluate and store the function Up,(R,, Rg). It results numerically advanta-
geous to perform the change of variables: Rz — Dgs, = Rg— R, and thus the
functions that are actually stored are U, (Dgsa, Rg). The variable Dy, is dis-
cretized in intervals of HNL, from CENTRE-RNL/2 to CENTRE+RNL/2,
i.e., range of RNL centred at CENTRE.

Example 4: DWBA As an example, we will consider the transfer the
pickup reaction “N("Be,® B)!*C at 84 MeV, in which a proton is transferred
from the “N target to the "Be projectile. For the “N we adopt the two
cluster model: “N—'3C + p, where the valence proton is assumed to occupy
the 1p,/, orbital, with an spectroscopic amplitude A = 0.87. Concerning

3If the core can be excited, it is necessary to solve a coupled set of equations, involving
the possible states of the core.
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Figure 3: Relevant coordinates for the description of the transfer reaction

the ®B nucleus, we use the model: ¥ B—"Be + p, with the valence proton
in a pure single-particle state 1p;, (A = 1). According to the mass tables,
the binding energies (i.e., one particle separation energies) are e = 7.55 and
e = 0.137, respectively.

Notice that two partitions have to be defined, one for the entrance channel
(*Y'N+"Be) and another for the exit channel (8B+'3C). To calculate kinetic
energies it is also necessary to give the ()-value of the reaction, i.e., the
mass difference between the two partitions. This is specified through the
variable QVAL (QVAL=-7.41 in this case). For each one of these partitions
an optical is defined. These will be used to generate the distorted waves
Xo and s appearing in (39) and (41). In this example, these correspond
to potentials KP=1 and KP=2. They are normally chosen to describe the
elastic scattering of the corresponding partitions. Thus, potential KP=1 is
intended to describe the elastic scattering of the system *N+"Be at 84 MeV
and KP—2 the elastic scattering of 8B-+13C at E ~ 78 MeV.

In order to calculate the bound wavefunction of the transferred particle in
the initial and final nucleus the &overlap/ namelist are defined. Thus, in the
case of the proton bound to the 3C core, the following namelist is provided:

\&OVERLAP kn1=10 icl=1 ic2=2 in=2 nn=1 1=1 sn=0.5

j=0.5 kbpot=3 be=7.5506 isc=1/

- kn1: label to identify this form factor
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icl, ic2: Indexes of the partitions containing the core nucleus (**C) and
the composite nucleus (1*N). They can be assigned in any order so, for
this example, we can define either IC1=1, IC2=2 or IC1=2, IC2-—1.

in: bound state of projectile (IN =1) or target (IN=2)

nn: number of nodes. We assume that this the last proton of the N
occupies a 1p;/, single particle states and thus nn—1

l: orbital angular momentum ¢

sn: spin of transferred particle
- j: vector sum l+sn

- kbpot: is the label of the binding potential. Notice that in this example
a potential kp=3 is previously defined in a &pot/ namelist.

- be: binding energy (energy separation) of the valence proton.

- isc: with the choice isc=1 the TYPE=1 (central) component of the binding
potential (KP=3) will be varied to give binding energy BE.

Analogously, an &overlap/ namelist is defined to describe the wave function
of the valence proton in the *B nucleus.
Next, the kind of transfer is defined through a &coupling/ namelist:

\&COUPLING icto=2 icfrom=1 kind=7 ipl=1 ip2=-1 ip3=5 /

- icto, ictfrom: indicates that the valence particle is initially in the ICT-
FROM partition and is transferred to the ICTO partition. In our
example, the valence proton is initially bound to the nucleus “N, that
belongs to the first defined partition; thus, ICTFROM=1.

- kind: is the type of coupling. kind=1-4 corresponds to single-particle
excitations of projectile/target, whereas kind=5-8 are used to define
transfer couplings. For finite-range reactions, we will define a kind=7
coupling.

- ip1: to specify prior (ipl=1) or post (ip1=0) interaction.
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- ip2: is the type of remnant: no remnant (ip2=0), real remnant (ip2=1)
or complex (ip2=-1). In this example we choose full complex remnant
(ip2=-1) in prior representation (ipl=1).

- ip3: is the index of the potential used as core-core interaction (note these
two cores are the same in either the post or prior representations).

Thus, with this choice of the input variables the transition amplitude contains
the potential: V,, + U,, — U,, where V,;, is the binding potential of the
valence proton in the "Be nucleus, U,, is the core-core potential "Be+'3C
(KP=5) and U, is the optical potential describing the elastic scattering for
the "Be+'*N system (KP=1). The remnant potential corresponds to the
difference U, crnnant = Uap — U,

Next, the spectroscopic amplitudes appearing in Eq. (44) are provided by
means of &CFP/ namelists:

\&CFP in=2 ib=1 ia=1 kn=10 a=0.87 /

\&CFP in=1 ib=1 ia=1 kn=1 a=1 /

The variable IN is used to distinguish between projectile (IN=1) and
target (IN=2). Then, the first namelist defines the composite N in its
ground state (IBb=1) as consisting on a '*C core in its ground state (ia—1)
coupled to the valence particle and with spectroscopic amplitude A,,;; = 0.87.
The bound wave function will be calculated with the information provided
in the coupling KN=10.

In the same way, the second &cfp/ namelist defines the overlap *B—"Be
+ p. In this case, the cfp amplitude is chosen as 1, meaning that we assume
the valence proton to be on a pure single-particle state.

We finally notice that, apart from the usual information provided in the
namelist &fresco/ , the following variables are defined:

\&fresco ... rintp=0.20 hnl=0.100 rnl=12.00 centre=0.25 ... /
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As explained above these variables are related with the integration of the
non-local form factors.

Another important variable in this namelist is ITER. The coupled equa-
tions for rearrangement reactions are solved by iterations. The variable ITER
refers to the number of iterations used by FRESCO. Thus, ITER=1 corre-
sponds to 1-step Born approximation. Physically, this means that the valence
particle is allowed to be transferred from the a partition to the § partition,
but the backward coupling 5 — « is forbidden. This is in general (but not
always!) a good approximation for transfer reaction is a small fraction of
the elastic cross section, and so the perturbative calculation in one step is
justified.

36



Example 4: DWBA

DWBA 14N(7Be,8B)13C
NAMELIST

&FRESCO hcm=0.100 rmatch=60.000 rintp=0.20
hnl1=0.100 rnl1=12.00 centre=0.25 rsp=0.0 jtmin=0.0
jtmax=150.0 absend=-0.0010 dry=F

thmin=0.00 thmax=60.00 thinc=0.5

ips=0.0000 iter=1 pralpha=F nnu=24 chans=1 smats=2
xstabl=1 pel=1 exl=1 lab=1 1lin=1 lex=1 elab=84.0000
fatal=T nosol=F psiren=F /

&PARTITION namep=’Be7’ massp=7.0169 zp=4 namet=’14N’
masst=14.0033 zt=7 qval=0.0000 pwf=T nex=1 /
&STATES jp=0.0 bandp=1 ep=0.0000 cpot=1 jt=0.0
bandt=1 et=0.0000 fexch=F /

&PARTITION namep=’B8°’ massp=8.0246 zp=5 namet=’C13’
masst=13.0033 zt=6 qval=-7.414 pwf=T nex=1 /
&STATES jp=1.5 bandp=-1 ep=0.0000 cpot=2 jt=0.5
bandt=-1 et=0.0000 fexch=F /

&partition /

&POT kp=1 itt=F ap=7.000 at=14.000 rc=0.697 /
&POT kp=1 type=1 itt=F

p1=79.1 p2=0.763 p3=0.88

p4=36.0 p5=0.837 p6=0.98 /

&POT kp=2 itt=F ap=1.000 at=0.000 rc=2.939 /
&POT kp=2 type=1 itt=F

p1=85.200 p2=3.300 p3=0.910

p4=39.300 p5=3.760 p6=1.020 /

&POT kp=3 itt=F ap=0.0 at=13. rc=1.3 /

&POT kp=3 type=1 itt=F p1=54. p2=1.3 p3=0.650 /
&POT kp=4 itt=F ap=1.000 at=0.000 rc=2.391 /
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&POT kp=4 type=1 itt=F

pl=44.675 p2=2.391 p3=0.520 /

%POT kp=4 type=3 itt=F pl=4.898 p2=2.391 p3=0.520 /
&POT kp=5 itt=F ap=7.0 at=13. rc=1. /

%POT kp=5 type=1 itt=F p1=54.3 p2=0.92 p3=0.79
p4=29.9 p5=1.03 p6=0.69 p7=0.000 /

&pot /

&0OVERLAP knl1=10 icl=1 ic2=2 in=2 nn=1 1=1 sn=0.5
j=0.5 kbpot=3 be=7.5506 isc=1 ampl=0.0000 /
&0OVERLAP knl=1 icl=2 ic2=1 in=1 nn=1 1=1 sn=0.5
j=1.5 kbpot=4 be=0.1370 isc=1 /

&overlap /

%COUPLING icto=2 icfrom=1 kind=7 ipl=1 ip2=-1 ip3=5 /
&CFP in=2 ib=1 ia=1 kn=10 a=0.87 /

&CFP in=1 ib=1 ia=1 kn=1 a=1 /

&cfp /

&coupling /
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6 Continuum Discretized Coupled Channels (CDCC)

(to be written....)

Appendix

Here I list a few complementary programs that help to handle fresco output
files.

e sumbins.f:
o bu-ldist.f:

e sumxen.f: sum various L,j,I components for each energy bin to con-
struct an energy spectrum input: file.xst output: file.xen to be fed
in through command line (so far can only deal with equal grid for all
components)

e 2coltofr.f: Converts a two column file (typically containing radius and
wavefunction) to (1P,6E12.4) format

e frto2col.f: Converts from (1P,6E12.4) format to two column fortran
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