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The coulomb wavefunctions, originally constructed for real p>0, rdal 4 and integer,l)0,
are defined for p,4, and ,1 all complex. We examine the complex continuation of a variety of
series and continued-fraction expansions for the Coulomb functions and their logarithmic

derivatives, and then see how these expansions may be selectively combined to calculate both
the regular and irregular functions and their derivatives. The resulting algorithm [46] is a
complex generalisation of Steed's method 16,7f as it appears in the real procedure COULFG

[10]. Complex Whittaker, confluent hypergeometric and Bessel functions can also be

calculated. O tsso Academic Press. Inc.

1. INrnooucrroN

The Coulomb wavefunctions Ft(q, p) and G^(q, p) are the two linearly indepen-
dent solutions of the differential equation

f " ( p ) + ( 1  - 2 r y 1 p - 1 ( A + D l p ' ) f ( p ) : 0  ( 1 . 1 )

that are defined by the boundary conditions

F^(rt,  P :0):0 (regular solut ion)

and

F^(rt, o) _*;;? sin 0r,

G ̂ (q, O) 6=;? cos 0i,
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COMPLEX COULOMB AND BESSEL FUNCTIONS

where 0, : p - q ln 2p - 1nl2 + o 1(4), and all uariables are complex unless otherwise
stated. The quantity o1 is the Coulomb phase shift, constructed so that for real
p,4, and,t, the functions F, and Gl are all real; the formula for ol will be given
below. The combinations f/ra : G t* iF^ are defined, and become etiq^ as lpl -* .o
asymptotically.

The real functions F,,, Gt, F'^, and Gi (where the prime indicates dldp)havebeen
extensively studied and two main methods of calculation have been developed. The
approach exemplified by the reviews of Frciberg [1] and of Hull and Breit l2l, and
the programs of Bardin et al. l3l and of Strecok and Gregory [4], is to divide the
p, q plane into regions in which suitable transformations of Eq (1) yield convergent
series or integrals. Results for different (integer) ,t are obtained by downward (Fr)
and upward (G.1) recurrence, terminating always at A:0. The approach of
Gautschi [5] and of Barnett et al. 16-81makes use of continued fractions and a
normalising condition; Gautschi's method yields the regular solution from some ,1
to A:0 whereas Barnett adopted Steed's more general technique to calculate the
regular and irregular functions (with their derivatives) for any specihed (real) ,t [9]
or for a range of integer-spaced ,l-values [ 10]. It is this method which is generalised
in the present paper, for it has the remarkable property that no knowledge of the
form of the singularity of Gl at the origin is required.

It is worth emphasising that, due to the normalisations chosen, only Steed's
method is suitable for real values of ,i as opposed to integer values, and indeed for a
single real value (i.e., obtained without recursion). Such a program is KLEIN [9]
which is thus suitable for precise calculations involving the Klein Gordon equation,
the Dirac equation [11, 13] and the Fourier-Bessel equation [13] and many
others, e.g., cylindrical and spherical Bessel functions of real order. The present
paper is concerned with the extension of not only 2 to the complex plane but of the
arguments p and r7 as well.

Frciberg's review [1] in 1955 and the monumental survey article by Hull and
Breit [2] treat the repulsive potential, real p and integer ,?. values, while that of
Curtis [14] in 1964 dealt with the attractive potential, both real and imaginary p
(positive and negative energies ) and gave tables for ):0, 1,2. Tabular results and a
summary of formulae are given by Abramowitz in two articles [17]. A survey paper
by K<ilbig [15] in 1972 drew attention to the method and program (for repulsive
potentials and realp) of Gautschi [5] which calculates both F^and Fi for integer
,1, while Fullerton's bibliography [16] of the recent literature appeared in 1980. The
most recent review, covering rqal arguments and hence both attractive (Re 4 < 0)
and repulsive potentials (Rerl>0), is that of Barnett [8] in 1982; it summarizes
and evaluates Steed's continued-fraction method and it provides a detailed com-
parison between the methods of Gautschi and Steed.

There are relatively few computations and programs available for complex values
of the arguments, and these often deal with limited ranges of parameter values. For
purely imaginary p and 4 (:ik), Whittaker functions were tabulated by Hebbard
and Robson [18] for the repulsive potential (when k<0) and by Curtis [14]
(when ft > 0). Two recent programs, designed for electron scattering calculations,
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are those of Bell and Scott [19] and of Seaton [20]. Bell and Scott compute Whit-
taker functions by a combination of an asymptotic expansion and one about the
origin; Seaton uses an expansion about the origin and deals with real p and with
imaginary p; and both are limited to relatively few integer L values (,1< 10). The
recent program of Noble and Thompson [21] extends this,tr range and makes use
of Pad6 acceleration methods to improve the convergence of the asymptotic form;
both attractive and repulsive fields are solved. Two further programs based on
asymptotic expansions for repulsive potentials are those of Tamura and Rybicki
l22f for complex p (complex energy) and of Takemasa et al. l23l for complex ,t
but real p.

Studies in pion scattering and in pionic and kaonic atom energy levels at times
require results for complex p and complex ,1. The papers of Atarashi et al. 124),
Cooper et al. 125f, and Rawitsher l26f illustrate different approaches to the
question of obtaining suffrcient accuracy.

The methods detailed in the present paper will allow the accurate calculations of
complex Coulomb functions for every one of the above cases as well as for complex
Bessel functions. A detailed survey of comparative calculations is given in a related
paper l27f by the authors which serves as a verification of the accuracy claims for
the quoted parameter ranges and which demonstrates the comprehensiveness and
power of the current approach.

2. DsrNtrtoNs AND ANnryrtc CoNrrNu,rrroN oF THE CouroMs FuNcrroNs

Although originally defined for the scattering of charged particles in quantum
mechanics, the Coulomb functions F, G, H+, and H- can be used to give two
linearly independent solutions of any second-order differential equation of the form
.f"  + g(p) ' f (p):0 where g(p) has p 2, p- r ,  and p0 terms. I f  ry:0, for example,
they are simply related to the cylindrical Bessel functions -I, Y, H(l), H(2), I, K,
and also to the spherical Bessel functions j, y, h(l), and h(2), by

For integer v these are standard definitions, given in [17a, Eqs. 14.6.6f.
In order to make the analytic continuation of the F and H'(=H!) Coulomb

wavefunctions to each complex plane, with cuts (if present) along the negative real
p axis, we start [17a, Eqs. 14.1.3 and 14.5.91with the following hypergeometric
series expansions

J"(p):  (2lnp)t /2F" ,p(0, p)

Y "(p) :  -  (2lnp1trz6, _ rp(O, p)
j , (p ) :  p  'F , \0 ,  p )

y , ( p ) : _ p  t G , ( 0 , p ) .

F,,(rt, p) - p^ * t e' 'o C ̂ (/ i rF r(a; b; z)

H?(rl, i l : ei-s'zFo(l + a - b, a;; - l lz)

(2.ra)
(2 .1b)
(2.rc)

(2.1d)

(2.2a)

(2.2b)

(2.2c): ei'e^2"(J(a, b, z)
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wherea : l+A* i r t t4 ,b :21*2 ,2 :  -2 iapandwhere  a :  *1  o r  -  t .  r f rva ; t ;T t )
is alternatively written M(a, b, z). ln (2.2a) either cr;( * 1) may be chosen (Kum-
mer's transformation) for the best numerical convergence and C7(4) is given by
(2.3b). The 2Fo(a,6;;z) function has a cut along the real axis from u:l to u:6,
so (2.2b) can only be used for *nl2<asarg(p)<n.

For 4 and ,t complex in general, the Coulomb functions are related to the Whit-
taker functions Wr,r(z), which provide another general characterisation [32] of the
solutions to (l.l) as Wr,r(z) and W-r.u(-z).'fhe relation is given through (2.2c)
and (13.1.33) of [17a]. Any one of the Coulomb, Whittaker, or hypergeometric
pairs of functions could be used as a numerical basis for calculating whichever form
may be required. With ar such that lf/'l is the smaller of lH+ I and lI1-l we have
chosen to use the Coulomb functions F and H- as a basis for the followine reasons:

1. The Coulomb functions have unit Wronskian FH-H'F:l, so that Fand
fI will neven both become vanishingly small. This is in contrast to the
hypergeometric Wronskian

M'(J-(J'M: -Hr

2. The value of co is chosen so that the basis pair (d I1') always includes the
function in the set <F, G, H* , and 11- ) with the smallest modulus (i.e., ,I/- when
l,ll is small and F when l,tl is large). This is necessary as that member cannot be
accurately calculated by any difference formula. Using Whittaker functions would
prevent accurate calculation of F for large lAl, since lFrl becomes small and both
the Whittaker functions have large modulus.

3. F and H@) satisfy the same recurrence relations, so that the stability when
recurring in a certain direction can be monitored, as any error introduced will
behave in proportion to the other solution. This means that recurrence will be
stable provided the wanted solution is not decreasing monotonically. This is in con-
trast to Wr,uQ) and ll/ -r,p(-z), which satisfy dffirent recurrence relations, and for
which such a simple guide to stability is not available.

4. It is only a minor disadvantage that the requirement of a unit Wronskian
leads to additional square roots in the Coulomb phase shifts and Gamow factors
(see below), and that these factors may have poles and zeros for various ) and 4
combinations (and hence for all p for these combinations). The square root
ambiguities may be simply resolved by using an analytic log-gamma function with a
well-dehned cut. It is also easy to return the next-order coefficients of the functions
around the poles and zeros to enable, e.g., Whittaker functions to be everywhere
reconstructed to full accuracy.

The usual formulae [2] for the Coulomb phase shift or(4) and Gamow factors
C1(4) are given (for integer ),: L) in fl7a, (14.5.6) and (14.1,.7), respectivelyl, but

/

dl= cuX P(H t- '4) * e-"Ihlr
._-__=J_-

r( ?Lt ?)
cr(nit=
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these must be analytically continued [28, 291 to the case when ,i and 4 are com-
plex. We use instead

and

Consistent procedures must be given to determine the multiple of 2ni in the com-
plex logarithms. Following Kolbig [15,30], we define an analytic log-gamma
procedure ln f(w) with its cut along the negative real w-axis. This function is
therefore single-valued for all w not on the cut (where it changes discontinuously by
a multiple of 2ni). The above o 7(4) and C 1(4) are thus well defined everywhere
except on the cut, and are mutually consistent according to

C ̂ (q):2rexp(- n4l2 - iao ̂ ) r@)lr(fi. (2.4)

This consistency procedure means that even if a (:1+ A+aiT) is on its cut (i.e.,
is non-positive real), the uncertainty of 2ni in the ln f function only changes the
sign of all the C^, eio)", F, and H- simultaneously, so that formulae (2.2) for the
hypergeometric and Whittaker functions still hold. The M, U, and llz functions are
all continuous in the neishbourhood of the cuts.

3. ExpaNsloNs Su[nsrn roR Nurvrsnrcl.r CaLcurnrroN

The F and H' basis functions are def,rned, (2.2), through the hypergeometric
series expansions

,F , (a ;b ; , ) : t * i i .m* . .  w i th  z :  -2 iap

o r@): [h r( 1 + 1+ iq) - ln f( 1 + 1- fu)] lQi)

C^{rt):2^ exp{-n412+ ln f(1 + 1+ i4)

+ ln f(1 + ).- ia)ll2-1rr' rQ)"+2)j

, a b u , a ( a + 1 l b ( b * l ) u ' �- l l  -  
r

(2.3a)

(2.3b)

(3 .1 )

and

2F6@; b; ;  u) :  I wi th  u :  a lQ ip) :  -  l l z

(3 .2 \

which can be used directly only for small lpl and large lpl, respectively, so there is
an intermediate range where neither is adequate on its own. In this middle regiorr
round-offerrors in the partial sums of the ,-F, series are large fractions of the final
value, and with the ,Fo asymptotic expansion the terms start increasing again
before sufficient accuracy has been obtained. As it is absolutely convergent, the
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accuracy of the rF, series can be improved by selective extended-precision
arithmetic, but there are still intermediate regions requiring dillerent treatments.

These are problems which faced the authors of programs exploiting these for-
mulae; for example, Towner and Hardy ll2) in an unpublished program to
evaluate u and. M and, hence B-decay integrals in nuclear physics and Moon [31]
in a program to calculate Airy functions p.: -116, q:0, complexp].

There are three principal means of improving the range of allowable arguments:

(1) using recurrence relations,
(2) calculating logarithmic derivatives F'f F and H-,lH-,
(3) using Pad6 acceleration via continued fractions.

These extensions may be verified either by (3.1), (3.2), or by comparison with the
integral representations (14.3.1) and (14.3.3)for the irregular solution of [17a]. we
used the adaptive integrator DO1AKF from the NAG library, choosing that integral
which was calculated most accurately. Such verifications were necessary because no
previously published procedure finds the coulomb functions when p, 4, and ). are
all complex.

3.1. Recurrence Relations

The .F, G, and iI' functions all satisfy the same three-term relation

R^U  ̂-  r :  T ; , (J  t -  R , r  *  ,U  , .  *  ,

alternative forms of which are

(3 .3 )

and

where

R^Us.  1 :  U) .+  S^U 1

U' ; ._ t :  S ; .Ut  , *  R ;U, , ,

S t :  A l  p  +  r t l ) " ,  T t :  S ; *  S , * , ,

and

R^:  (24 + l )  C 1kt ) lc  ^  , (q) ( s o R l : l + 4 2 1 ) " 2 ) (3.4)

for U1:Ft, Gt, Hf , or 11;. These can be rearranged for upward recurrences, i.e.,
increasing l:R.e(A).

Calculation by recurrence is numerically stable provided the desired function is
not monotonically decreasing. This simple criterion for determining the stable direc-
tion relies on the wanted and unwanted solutions having a Wronskian independent
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of ,1. This is not the case for direct recursion of the Whittaker functions, for
although Wr,uk) and W,r,u (- z) have l'-independent Wronskians, they recur using
different relations. Thus the unwanted solution in the recursion of say, lI/+, is not
W but some other function whose Wronskian with W+ does depend on ,1, and
examples exist of W* recurrences being unstable even though it monotonically
increases. Consider the behaviour for the case p:37.5i, 4:6.67i for ,1 increasing
from 0-15 as is given in Bell and Scott [19]. The errors here grow by l0 orders of
magnitude as l27f demonstrates.

In order to determine the directions of stable recurrence of a particular Coulomb
function, we need only see where the modulus of that function either oscillates or
increases monotonically. We retain the nomenclature used when ,t is real, i.e.,
upward recurrence implies I increases in integer steps and downward recurrences
implies I decreases in integer steps.

For large z1 the regular solution F, is the only minimal function [5]

()rm FAIHA:0 for any H^ not linearly dependent on Fl)

so downward recurrence of ,F, from large l is stable down to some turnover point
after which lF^l may decrease. Indeed for F1 the stronger condition

,1t11 
rr: o

holds. Conversely, the H- and G all have mixtures of the irregular solution, so their
upward recurrence is stable for ,4 above the same turnover point.

For 2 near zero, the ,Il- solutions behave as e'-t^, so when 0, has a signihcant
imaginary component, one of Ihe lH-l will be small and H ', F and G will all have
large modulus. As 11- is small for small l, and (from the above) large as A --+ ct),
upward recurrence of H' will be stable-provided we check that it does not
decrease for a while before increasing asymptotically.

The adopted procedure is therefore to recur F,. downward and llf upward,
calculating H;- and G, from them at each )., but reversing both these directions if,
for a range at low l2l-values, lF,,l increases and ll1fl decreases with increasing l,tl.
This reversal occurs, fgr sxample, for bound states in attractive Coulomb potentials
for ,t from 0 up to .,/ -rtp.

Note that when recurring in the region I < -l the regular and irregular
solutions are remixed, and the increasing and decreasing behaviour of the moduli
can become quite complicated. A much more reliable way of hnding the functions
for A negative is to express them in terms of the functions for i': -)'- 1. This is
because for )" and,t'the values of ).(A+ 1)are equal, and the functions satisfy the
same differential equation and differ only in their boundary conditions. The
Coulomb phase shifts o^and o'1 a,ra known by (2.3a), so

H7: H7,exp(iafi (3 .5a)
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where

X : o ^ - o t ' - ( 1 + i l n . (3.sb)

3.2. Logarithmic Deriuatiues

In principle it should be easier to calculate the ratios FIF and H-'lH- than the
functions F and H- themselves because divergences in the function evaluations only
affect the ratios in second order. The most important advantages however, are that
for these ratios there exist continued-fraction expansions with coeffrcients given by
simple algebraic expressions, and that there exist several methods (see Appendix)
for the progressive evaluation of the continued fractions to the required accuracies.

3.2.1. Continued Fraction CFI for the Regular Solution

The hrst continued fraction, CFl, calculates the logarithmic derivative at the
regular solution F/4, p) as

cFl =+:s,r, -S* !-z -R3'*'
F )  T ^ * ,  T t * r _ T ^ * r . . .

and is essentially [8] the recursive evaluation of (3.3) in the form

c t c  ( a +  l X c +  l )

(3 .6)

F  ̂  *  r l  F  ̂ :  R t  *  r l lT  ̂  * ,  -  R , . *  zF , , * r l  F  ̂ *  r f

up to a large A: M, say.
CFl is therefore accurate to the required tolerance e if and only if Miller's

downward recurrence from F- is sulficiently stable (z : M + ilm )"), and by Sec-
tion 3.1 this depends on lfll not decreasing monotonically in any signifrcant region
from l:M towards to the desired rl. This is not always true, as sometimes lFrl
increases with increasing ,,1 before decreasing asymptoticaly as 1--+ oo, so CF1 will
not always be accurate. This is the same anomalous case that was noted in Sec-
tion 3.1. Indeed, if lFll increases by more than t-t/2 then CFI will pick up the
decreasing 11' solution, and may give the wrong sign for the logarithmic derivative.
CFI is also unstable for ,t near to a negative integer, but the reflection rules could
well be used in these cases.

3.2.2. Continued Fractions CF2(a) for the lrregular Solutions

The second continued fraction calculates the logarithmic derivative of Hf or H;
&S,

H"'
cF2(a) =?; :,co( I - ql i l  + 

12.
2(p -  q * i r r . r)+ 2(p -  4 -r  2ia) -r  . . .
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where  a : l+ ) " - t ia r1  and c :  - ) - t io t r l : l+a-b ,  and is  based [6 ,8 ]  on  the
recursive evaluation of the inverse of the ratio

,Fo(a; c;; u)

, F o ( a * l , c * I ; ; u )
-- | - (ar c + 1) u - u21a+ I Xc a g {!!2t!2-9.

,Fo@ * l ,  c  1-  l ; ;  u \

(it is equivalently the odd contraction of Gauss' continued fraction for ,-Fo
[33, 34]). Although the 2Fo series is only asymptotically convergent, this ratio has a
very strong convergence property, and the continued fraction is convergent
throughout the complex u-plane exterior to the ,f'o cut along the real axis from
u:l to u:@. The CF2(co) is therefore convergerrt except when p approaches the
line joining the origin to u: -ial2, where it changes discontinuously, and thus is
convergent everywhere on the side of real p axis, where 11' tends to be exponen-
tially decreasing. In contrast to the evaluation of CFl, no instabilities have been
detected, and for lpl> l0-'the CF2 is found to be numerically accurate to within
several digits of machine accuracy even though the number of terms required for
convergence rises approximately as lpl-o'tt as lpl --+0. For lpl<1, the methods of
Section 3.2.5 are more ellicient.

On the side of the real axis opposite to the cut, i.e., for Im(p)<0 for CF2+ as
shown in Fig. 1, the CF2 only gives H-'f 11- correctly for Re(p) > 0. This is because
f/' changes discontinuously on its cut placed on the negative p axis by dehnition,
but CF2 does not suddenly change there. Therefore, even though the CF2(ro) are
convergent in all quadrants, they can only be used for -nl2<aarg(p)<2, and in
the remaining quadrant different methods must be used.

3.2.3. Asymptotic Expansions for the Regular Function

An asymptotic expression exists for the logarithmic derivative FilF^, which we
call CF1A as it is based on the asymptotic expansions for 11+ andH-:

CF|A : - (H* '  -  H - ' ) l (H*  -  H  ) :  l im  h t t (3 .8)

Ftc. 1. Analytic ranges and cut positions of the logarithmic derivatives of IIt and the continued
fractions CF2+ and CF2 . In the dashed quadrants, CF2t do not equal the logarithmic derivatives
of  H! .

Im(p) I  m(p) I  m(p)
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where

h r :  L

The coeffrcients gf;, f f , go, and fo obey the recurrence relations given in [17a
(14.5 .8)1 .

The numerators and denominators are themselves asymptotic expansions for Fi
and F^ given by Frriberg [1] and in ll7, Eq. 14.51. They both converge most
quickly for large lpl, but their ratio converges more quickly than the separate
expansions.

To use CF1A for still smaller values of lpl, we must calculate the coellicients of
the corresponding continued fraction, and evaluate that continued fraction. This is
equivalent to Pad6 acceleration ofthe sequence h*, and is discussed further in Sec-
tion 3.3.

The validity of CF1A in the complex p-plane depends on the 2F6 asymptotic
expansions for H* and H bothbeing accurate. The expansions for H' are valid
just where CF2'are valid, and their regions of validity overlap only for Re(p))0
except where Re(p):0 and llm(p)l { }. To extend to the negative Re(p) half-plane,
the reflection formula

f  ̂ (q ,  p) :  -  . f  ̂( -  n ,  -  p) (3.e)

where f^=F'if F7, can be used since the logarithmic derivative of just the regular
solution is being calculated.

3.2.4. Continued Fraction CFI' for the Regular Solution

Two more expressions for FIF exist in continued-fraction form, called CFI'(a;)
for cr;: *1 as they are similar to CFl, but derived more directly from the defining
equation (2.2a) for ,F1. Using one of the continued fractions (66) in the useful
catalogues of Wynn 1341, i.e.,

, F r ( a * l ; b + 1 ; z )_  b  ( a +  1 )  z  ( a + 2 )  z
b - z - t  b - z * 1 +  b - 2 I 2 " 'f  la ;  b ;  z )

it follows that

499

(g fcos  0^+f f  s in91) /  I  (go  cos0^+fps in01) .

) + t  2 i a a  2 i u t p ( a 1 - l )
CFI'(c.r):-:----- - iat -

p  b - z *  b - z + l +
2iap(a + 2)

b - z * 2 +  " ' (3 .10)

with a, b, z as in (2.2).
For smal l  values of lp l  compared with lql '+lAl .  CFI ' (co) both converge rapidly

to the correct result. For larger values of Rep, however, CF1'(ro) both suffer from
"false convergence" as first pointed out by Gautschi [35]. That is, the differences
between successive convergents of CFl'become small, seeming to indicate con-
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vergence, but then increase again by many orders of magnitude before finally con-
verging. This is exactly analogous behaviour to the CFl instabilities discussed in
Section3.2.1, but now occurs for p,r1, and,t all real. This in itself is not a serious
defect for CFl'-the problem is to determine when it occurs, and to decide which
choice of c; value (if either) gives a correct result. The CFl behaviour is understood
as it depends on the recurrence behaviour of F1(4, p) values for integer-spaced 7
values with 4 and p constant. The CF1'(ro) behaviour, by contrast, depends on the
stability of recurring F^*o(qliak, p) values downward from a large k to k:0 in
steps of j, and as F^(4,p) values for differing 4 parameters are not usually com-
pared, the general behaviour of CFf is an open question.

3.2.5. Expansions of the Irregular Solution about the Origin p:Q

The simplest expansion of G1(4, p) as an expansion about p:0 uses (3.5) to give

G^(q, p): lFt(4, p) cos X - F^,(n, p)llsin X ( 3 . 1 1 )

where,l': -),- 1, and Fland F7, are given by the usual rF, series (2.2a). This is
analogous to (13.1.3) of [17a] and is suitable for non-integral )".

For x:0 (i.e., integer 1) (3.11) becomes indeterminate, but its limiting value as
x:0 may be determined by L'H6pital's rule. In these cases the irregular solution
has a logarithmic singularity at the origin, as shown in (13.1.6) of fl7a).

These two expansions of the irregular solution in terms of the regular solutions of
positive and negative orders (or the limit of this is 22 is integral), are often used to
defrne formally the whole irregular solution. These have been suggested as a
numerical method 148,49), especially after expanding the Fi in terms of F1*a for
k20, but they are only practical for lpl< 1. For larger lpl there are prohibitive
cancellation errors [50]. For lpl < j". however, they usefully supplement CF2, and
have the advantage that their cuts can be set correctly on the negative real p axis.

3.3. Pade Acceleration uia Continued Fractions

When a power series in z for a function f(z) diverges because singularities for
small z define a small radius of convergence, it would be reasonable to expect
rational approximations to the function to be useful for analytic continuation to
laryer lzl values. Pad6 methods (see, e.g., [33,36,37,38] can be used to construct
these rational approximations. The best-converged members of the Pad6 table P *.,
are usually the diagonal (N: M) and near-diagonal ones, and these members are
precisely [33, p. 380] the values of successive convergents of the continued fraction
constructed to "correspond" to the original power series, by requiring their coef-
frcients to agree up to a certain power zN * M but not above.

For practical calculations there is therefore a wide variety of equivalent methods.
The coelficients of the numerator and denominator polynomials may be found
explicitly by solving a set of linear equations [37, p.9] or by the more compact
algorithm DFRACT of [39,55], or their numerical ratios P*., in the Pad6 table



COMPLEX COULOMB AND BESSEL FIINCTIONS

may be sequentially evaluated using wynn's NEws algorithm, or his e-algorithm
140,41f. Alternatively, the diagonal Pad6 members may be evaluated by means of
the corresponding continued fraction, whose coefficients may be found by the eD-
algorithm 142f, the PD-algorithm [43], or the p-algorithm [44,45]. These
methods all require working arrays of (in total) 4N numbers to calculate a fraction
of N terms, and take a time rising as N2.

we frnd [21] that the Pad6 acceleration of the asymptotic expansion (3.2)
extends the convergence to larger z:ll(2ip), subject only to exponent overflow
and to N being sufficiently large. This improvement is more marked than with the
power series (3.1), for which Pad6 acceleration reduces [55] the cancellation errors
in the partial sums, but does not significantly extend the radius of convergence.

Because in a practical computation, e.g. [46], the working arrays have a
predefined size (in FORTRAN), and because failure to converge in this space con-
sumes considerable effort, it is important to estimate as accurately as possible
beforehand whether or not to attempt Pad6 acceleration of a given series. If the
continued fraction cF2(a) for the logarithmic derivative H.'lH- has already been
evaluated, then we can use the emperical relation observed in Fig. 2, which plots
the correlations between the number of iterations *Npe" required for CF2(cof and

/ . +

y'i; '
. :  I  . :

o 5 1 0 1 5 2 0 2 5 3 0 e 5 4 0

Npe I te ra t ions)

Correlation of the number of iterations required for CF2 and H-
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the number *N20" of iterations for a continued-fraction acceleration of the ,f'o
series for fI- itself. We observe that at least for NPQ < 15, the N20 values are
bounded by approximately 3.0 x NPQ. See Case 4, Section 4.2.

3.4. Temme's Algorithm for the lrregular Solution

Temme's algorithm [51] yields the absolute normalisation of the irregular
solution by means of a sum rule for a sequence of function values evaluated for l4
differing by unity, all with the same ,t value. Recurrence relations connect members
of this sequence just as they connect sequences of the same 4 and differing ,1. The
sequence for the Temme algorithm can be given as H?(rt - ika, p) for k integral, or
equivalently (by 2.2b) as @o: rFo(a*k, c+k;; u). The @p satisfy the recurrence
relation

Q * -  t  :  @ pB plQp) * Q * + rA o * r l (4p')

where lu*, : (a * k)(c +k) and B*: 2(p - 4 + iotk).
From (3.12) one has the continued fraction

(3.r2)

@,lA^ :  
2P

B t *

A 2

B z t  " '

from which CF2 (3.7) can be immediately derived. Temme shows furthermore than
the @o are normalised by

@

I  c u o o : 1
f t : 0

(3 .13 )

where co:1 and cr:iacp-tAolQpk). This sum, and the continued fraction, are
both convergent because (as proved in [51]) @o is the minimal solution as ft--+ 6p.
This means that Miller's backward-recurrence method [56] can be used to con-
struct the Qo (and hence the ratio <DrfQ) to any required accuracy provided the
downward recurrence is started at a sufhciently large k value.

campell 152,531and Amos [54] use this algorithm for Bessel functions (ry:0)
and use precalculated approximations for the necessary starting orders for Miller's
method to reach suffrcient accuracy. For a given accuracy approximately 3.5 times
as many terms are needed for the sum (3.13) compared with those sullicient for just
the (continued fraction) ratio @rfcDo. Methods are available, see Appendix, to
evaluate the continued fraction forward to any required accuracy, and can be
modified l47l to also calculate the sum (3.13) (relative to @o), so avoiding
precalculated limitations on accuracy.

Temme's algorithm is formally correct for each of the (p,4, ,i) complex planes
(with the cuts as for CF2; see Fig. 1 ), but for general 4, I there are often severe can-
cellations in the sum (3.13). It is only sufliciently accurate however, if [51] D is



COMPLEX COULOMB AND BESSEL FUNCTIONS

restricted to be real and in [0, I ], and a to positive real values. In practice, we hnd
it only useful for 1,1+]l and lRe(ry)l both less than unity.

Temme's algorithm appears most suited for purely imaginary 4 values and for
Bessel functions (4 : 0) of real order ,i and complex p (as in [53, 54, and 47] ). For
real orders, upward recurrence is always possible from,to satisfying llo+Ll(1to
any required ,1. In these restricted regions, Temme's algorithm would be a fast and
simple replacement for Pad6 acceleration of the ,Fo series. For complex Coulomb
functions, however, the Pad6 method gives nearly full machine accuracy in those
cases where Temme's approach suffers from cancellation errors.

4. CoMslNA.rroNs oF Mprnoos Acconoruc ro rHE (p, q, )") REcloN

We now outline suitable choices of the algorithms of Section 3 in order to
calculate the complex Coulomb functions for given g,4, 7 values and which are
embodied in the FoRTRAN progam couLCC [46]. In general, accuracies within
a few decimals of machine accuracy are possible.

To calculate the basis functions F 1 and H? it is sulficient to have their
logarithmic derivatives together with some means of absolute normalisation.
Recurrence relations can also be used to link ,t values with real parts I which differ
by integers; therefore in the range from,t-,. to ,1,-u*:l*in*k, for integral k20,
the imaginary part of ,t remains constant and the case of a single complex ,t value
(k:0) is included. If such a range of l.-values is required the numerical stability of
the recurrence relations demands that the logarithmic derivative of each function
should be evaluated at that end of the ,1 range from which the function does not
then monotonically decrease in modulus. The regular (minimal) solution is
therefore usually recurred with I decreasing and the irregular solution with A
increasing. For a given range of stable recurrences (A-,7,) the structure of
algorithm COULCC is shown in Fig. 3 and is similar to that of the algorithms for
real arguments [7, 10].

We now describe how to make the choices

(1) between CFIA and CF1 to compute the logarithmic derivative of the
regular solution at )",; and,

(2) between the Cases 1-6 of methods for finding the absolute normalisations
(using appropriate versions of the Wronskian).

4.1. Choice of Continued Fraction to Compute F'f F

usually the asymptotic form cFlA is simply a quicker method of calculating
F^lF^for large lpl> lryl'+ 1,11, as CFI takes at least lpl iterations for convergence.
Procedure COULCC chooses CFIA if lpl >ASYM'Cn,. where Coi is a number
describing the di{ficulty for CFIA:
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Co^: ( lRe(,4) l  +Im(A)2 + lRe(B)l  +Im{d�) \12 ( 4 . 1 )
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C F l  o r  C F 1 A
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f = F l ' / F l
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End with
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Calculate
c 1 , t t l ' e t c .
if required
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recurrence
while stable
o f  F t r r  F l
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Ftc. 3. Flow diagram for the evaluation of the complex Coulomb functions for the ,t range A- Lo 7,.

with ,4 : | + )* iq and B: | + A- iq and the parameter ASYM : 3.0. Sometimes
however, when CFI is unstable or ,i is near a negative integer then CFIA must be
used even if it does not fully converge.

4.2. Cqses of Absolute Normqlisation

For all p,q, andA, the regular logarithmic derivative F'lF is available (from
above), and also for lpl>0.5 the irregular H''lH- derivative from CF2(ro). The
"a;" value has been chosen to minimise the cancellation on the left-hand side of the
Wronskian

F ' lF -  H- ' lH ' : l l (F 'H- )
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so the product F'H'can be found close to machine accuracy. To hnd all of F, F,
H'', and f1-, however, afourth input is required: either the CF2(-a;) derivative,
an explicit F or H- evaluation, or, when p, 11, and 2 are on their real axes, the
method of [8, 10] which is Case3, below. This latter (using the notation f :FlF
and p * iaq : g-' 1g-) gives

505

and

The six cases in the code COULCC [46] cover the six different possibilities:

Case L Ffrom ,F' series (3.1).

Case2. p- i@q: H - ' lH -  f rom CF2 (*co).

Case 3. p - i@q from (p * iaq)* (when p and q real).

Case 4. 11- from ,f'o expansion (3.2).

Case5. H- from F^and F-t-, (3.11), with f'from ,F, series, and not CF2(co).

Case 6. fI- from logarithmic expression (see Sect. 3.2.5) with F from ,f', series,
and not CF2(rloj.

To decide which case to employ, we use the following considerations:

Case l. A direct series evaluation which is used as a last resort.

Cases2 and3. If p-iaq is to be useful, thenf, p*io4 and p- rco4 must all be
different, so the Wronskians W(F, H-), W(F, H-'), and W(H-,II -) may all be
used without significant cancellation errors. This occurs for p, q, and ,t near their
real axes, with Re(p) >lp^l (p^is the "turning point" ,t + JQt'+ M+ lD. as then
F, H-, and H-'are all oscillatory with moduli around unity. If p,4, andA are on
their real axes, I and q are real, and Case 3 is most ellicient, using (4.2), (4.3) (the
method of [10]) .

Case 4. The 2F6 expansion, with Pad6 acceleration, is only useful if it converges
in the working space available. We use the empirical criterion described in Sec-
tion 3.3, which is generally satished for lpl > lttlt + l)1.

Cases5 qnd6. If lpl<0.5, then CF2(a) converges too slowly, so the four inputs
are F'fF, F from the ,F, series, the Wronskian W(F,H-), and H'from Sec-
tion 3.2.5.

Case 1 is important for moderate lpl 
"inside"'the turning point lp1.l, and for A

with a large imaginary part. The tFl series is now evaluated in extended precision
to improve the handling of these di{licult cases (see Sect. 5).

F:  * l q l {@- f ) ' +q ' } f ' t '

H-: Fl(f - p)lq + iotf.

(4.2)

(4.3)
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5. REra,lrNrNG REGToNS oF Drrrrculry

For large 4 or for large Im(,l), there remain problems as the tF series may have
large rounding errors even in extended precision and the t,Fo expansion may not
converge even when Pad6 accelerated. In these cases it is usually dillicult to
establish the overall normalisation of all the Coulomb functions calculated. but
sometirnes the problem is more severe because of greater recurrence instabilities for
large 4. For p:2ffii and 4:75i, for example, F1 increases by 24 orders of
magnitude from ,i:0 to A:90, and so CF1 evaluated at A<60 will give the
logarithmic derivative of 11 not F. The difficulty is that downward recurrence
starting from this (wrong) logarithmic derivative will be stable, so the COULCC
procedure will not even detect the fact that the near-minimal solution it is
calculating is not the regular solution. The CF1A expansion should be used
therefore if instabilities are even suspected, but if 4 and ). are too large compared
with p, then the CF1A will not conyerge to any useful accuracy, and COULCC
must fail. If calculations in such regions are desired, therefore, additional large-4
expansions must be employed. Complex generalisations of the Bessel function or
Airy-function expansions of [17a], Eqs. 14.4.1-14.4.10 may be useful, along the
lines suggested in [29]. These however are most efficient in the l4l Y lpl limit, but
the above problems occur for l4lxlpl. They are also less efficient in general, as the
calculation of the Bessel or Airy basis functions requires the calculation of special
cases of the Coulomb functions themselves such as by 147, 52, or 541 and the full
Coulomb functions might have been calculated without much more effort.

6. CoNcrusroNs

The considerations described in Section 4 have been used to construct a FOR-
TRAN routine COULCC, and this program is being published concurrently [46].
It is designed to use the most accurate of Cases 1 to 6 to calculate the regular
solut ion F^(4,p),  oneof theirregularsolut ions G,H*,or H-,  andtheirderivat ives
for a range of complex orders ,1 with integer-spaced real parts, 1. Except for the
limitations described in Section 5, the results are accurate to within 2 or 3 decimals
of machine accuracy. This performance has been verified for Bessel functions by
comparisons [47] with other Bessel codes [53, 54]. Only a few other codes

[10, 19, 2lf attain similar accuracy for Coulomb functions, while those in [3, 5, 20,
22, or 23) have noticeable accuracy limitations. An error estimate is produced
within COULCC by examining cancellations at selected stages of the calculation;
the accuracy of this estimate has been also tested (cf. [57]) by the comparison with
an extended-precision version of itself.

These routines can optionally produce the Bessel functions J,Y, H, { orK as
they can set 4:0 and rescale the solutions by (2.1). A simplified Bessel version
BESSCC l27Jis also being constructed, specialised to real orders 1> -+, to avoid
not only the square roots in (3.4) but also the recurrence instabilities of Section 5.
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Both COULCC and BESSCC avoid precalculated starting orders for Miller's
algorithm [5, 53, 54,56) by the use of the modihed Lentz's method (Appendix III)
for the forward evaluation of continued fractions to near machine accuracy. This
feature improves the portability of the new codes.

APPENDIX: Tns Fonwllo EvnruarroN oF CoNrmuso FnacrloNs

The problem is to evaluate the convergents

t  I  Q 1  A Z  A n _ l  Q n
r r n : u 1 1 -  , '  ;  .

b t +  b 2 +  b n  , *  b ,

lor n:1, 2,... successively.

(I) The simplest method evaluates h,:A,f Bn, where A, and B^ are
found from the recurrence relations

A n :  A n  1 b , l  A n  2 a n

B n :  B , _ r b n +  B , , r a n

start ing with the ini t ia l  condit ions l -r  :  1,  Ao:bo, B t :0,  Bo- 1. However,  the
A, and B^ tend to grow exponentially with n, and usually need to be tested for
overflow and renormalised when necessary.

(il) Steed's method [6] does not use A, and,B, explicitly but only the
ratio Dn: Bn tlB.. lt calculates D, and /hn:|n- 1rn , recursively using Dn:
l l (D,  ,a , l  b , )  and lh^:  (b,D,-  l )  /h^_, .  However,  i t  can occasional ly  happen
that  D,-1a,- lbn=0,  so that  D,and /h,  wi l l  be very large.  The next  lh ,* rwi l l
typically cancel this large change, but only with some loss of accuracy in the
numerical running sum ,,+,:Z/h^.Jhis failure occurs, for example, when
calculat ing CFI  for  A:r t :0  and p : , /15.

(m) Lentz's method [58] uses both the ratios D, - Bn_1f B, and C^:
A,lA^-1 , and it calculates the ratio /,:h"fh, , of successive convergents. This
allows h, to be large in the above cases, but enables hn + t : / n + rh, to be calculated
without further loss of accuracy. It is now only necessary to avoid divisors being
exactly zero (i.e., less than machine precision), by shifting them to, e.g., 10 50 if
necessary. We therefore recommend Lentz's method (modified to include these zero
shifts) as both avoiding exponent overflows and yielding results of uniform
accuracy. In full, the method for the evaluation of h:lim^-*hn, to accuracy eps
is :
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ho: :  bo;  i f  ( f t ' :  0)  i6  : :  smal l
D o : : 0 ;  C r : : h o
for n:1, l imit do begin

D n : :  b o l  a , '  D n  , ;  l f  ( D " : 0 )  D " : :  s m a l l
Co : :  bn l  a , f  C ,  , ;  i f  (C " :O)  C , : :  sma l l
D n : :  l f  D n
/ n : :  D n ' C n ;  h , : :  h n - 1 / n

1f (l/"- 1l < eps) exit
end

Note. 1. The parameter small should be some non-zero number less than
typical  values of eps' lb, l ,  e.g.,  10-50.

2. It is necessary in a robust algorithm, as is also pointed out in [59], to
monitor both the numerator and denominator ratios for approaches to zero. Our
modihcation involves minimal change to the algorithm, whereas [59, (8)] proposes
an altered recurrence relation after the denominator zero (in addition to Lentz's
[58] treatment of numerator zeros).
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