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Abstract

This paper describes the components and methods of a comprehensive code for coupled reaction
channels calculations in nuclear physics. Procedures are described which are common to the mod-
elling of reactions induced by light and medium-mass ions, and which are sufficient to calculate the
effects of successive processes to any order.

1 Introduction

When two nuclei approach each other they may interact in several ways. In the first approximation they
may be regarded as clusters of nucleons, and their primary interaction results from the inter-nucleon two-
body force, which has an average effect found by folding the force over the internal configurations of the
two clusters. However, these configurations are not static,and one or more rearrangement processes may
occur during the time in which nuclei are together during a collision. As well as elastic scattering, with
the projectile and the target remaining in their ground states, various kinds of non-elastic interactions
may have time to operate.

Inelastic excitations may occur, for example when one or both of the nuclei are deformed or deformable,
with the result that higher-energy states of the nuclei may become populated. Single-particle excitations
are another kind of inelastic process, when a particle in oneof the nuclei is excited during the reaction
from its initial bound state to another state which may be bound or unbound. Nucleons may also transfer
from nucleus to the other, either singly, or as the simultaneous transfer of two nucleons as a particle
cluster.

In this paper I will consider some mathematical models sufficient to describe these processes, and the
principal interest will be in calculating the effects of their occurring successively as multi-step pro-
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cesses. One-step processes have been traditional described with the Distorted Wave Born Approxima-
tion (DWBA), and although second-order DWBA expressions can be written down and computed, I
shall be mainly concerned withcoupled-channelsformalisms, in order to predict the effects of multi-step
processes to any or all orders.

The present work is in the framework of Direct Reaction theory, which attempts to solve the Schrödinger
equation for a specific model of the components thought to be important in the reaction, and of their
interaction potentials. In direct reaction theories, the phases describing the coherence of all components
of the wave function are coherently maintained, and the potentials typically include imaginary compo-
nents to model how flux is lost from the channels of the model toother channels. By contrast, a theory
of compound-nucleus processes would make approximations as to the statistical distribution of the in-
elastic excitations. Direct reaction theory would describe these effects with an imaginary potential, with
the argument that because the compound nucleus channels areincoherent with respect to each other,
their effects back on the direct-reaction channels are alsoincoherent, and may hence be represented as a
statistical loss of flux that occurs when the nuclei overlap each other to any significant extent.

Comprehensive accounts of the physical assumptions, methods and results of direct reaction theory is
given in the papers by Tamura et al. [2], and in the books by Austern [3] and Satchler [33]. The aim of
the present paper is to show how a large subset of the direct reaction mechanisms can be modelled in
a general purpose computer program. For definiteness, I am following the methods used in the recent
code FRESCO, while also mentioning, where appropriate, additional features that could well be included
within its framework. Brief descriptions will also be givenof alternative methods, and the relative merits
of the different procedures will be discussed.

The code of ref.[34] has not been developed to include any special treatment of the long-range Coulomb
mechanisms that are significant when heavy ions are incidenton strongly-deformed nuclei. For methods
of dealing with these processes efficiently, the reader is referred to refs. [35], [36], [4], and [5], [37].

The organisation of this paper is as follows. Section 2 will give a derivation of the coupled reaction
channels (CRC) equations within the framework of the Feshbach formalism for direct reactions, and
show how one-step and two-step DWBA (etc.) are special casesof the CRC equations. In both the CRC
and DWBA formalisms, particular attention is paid to the treatment of the so-called ‘non-orthogonality
terms’ which arise with couplings between different mass partitions.

The wave functions needed to specify scattering states and nuclear eigenstates are given in section 3.
Single-nucleon wave functions are defined for both bound andunbound energies, and a method for
solving the coupled-channels bound state eigen-problem ispresented. Two-nucleon wave functions are
described in both the centre-of-mass and independent-radii coordinates. Finally, the formulae are given
for calculating the observable cross sections and polarisations in terms of the S-matrix elements of the
scattering wave functions.

Section 4 specifies some of the different kinds of potentialsthat exist between nuclei, or can couple
together the excited states of a single nucleus because of the interaction with its reaction partner. Details
of the rotational model, single-particle excitations and particle transfers are given.

The methods used to solve the CRC equations are described in section 5, along with the procedures for
calculating the transfer form factors in terms of a two-dimensional kernel function. Appendix A defines
some of the notation and phase conventions used, while Appendix B summarises the more widely-known
coupled-channels codes which have been written to solve problems in nuclear physics.
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2 Coupled Reaction Channels Formalism

The coupled reaction channels (CRC) model of direct reactions in nuclear physics proceeds by construct-
ing a model of the system wave function, and solving Schrödinger’s equation as accurately as possible
within that model space. The model used here projects the complete wave functionΨ onto a prod-
uct φi ≡ φip ∗ φit of projectile and target states with a wave functionψi(Ri) describing their relative
motion:

PΨ ≡ Ψ =
N
∑

i

φiψi(Ri) (1)

The basis statesφip andφit can be bound states of their respective nuclei, or they may bediscrete
representations of continuum levels. In the former case we have a ‘bound state approximation’, and in
the second case we have a ‘coupled discrete continuum channels’ [39, 40] (CDCC) approximation. The
statesφi can be in different mass partitions, or they can be differentexcited states of the projectile and/or
the target in any one of the partitions. What is essential to the CRC framework is that there be a finite set
(N say) of square-integrable basis states, as this leads to a finite set of equations coupling the channel
wave functionsψi(Ri) as unknowns.

For a complete HamitonianH and total energyE, Schrödinger’s equation[H − E]Ψ = 0 becomes
[H− E]Ψ = 0 in the model space with [6]

H = PHP − PHQ 1

QHQ− E − iǫ QHP, (2)

whereQ ≡ 1 − P andǫ is a positive infinitesimal quantity whose presence ensuresthat the excluded
channels have a time-retarded propagator, and hence onlyremoveflux from the model space. The second
term as a whole describes the effects of the excluded channels on the model subspacePΨ. These
effects could be, for example, from compound nucleus formation, which we have excluded from explicit
consideration within direct reaction theory. In the absence of detailled knowledge of these effects, we
construct our model HamiltonianH using effective potentials which we believe approximate (in some
average manner) the processes described by equation (2). The effective potentials will often be optical
potentials with real and imaginary components fitted to somesimpler kinds of reactions, and the effects
of compound nucleus formation on these potentials is to contribute to their imaginary component.

The model HamiltonianH for the CRC system can now be projected onto the individual basis statesφi.
If Ei is the asymptotic kinetic energy in thei’th channel, then the channel-projected HamiltonianHi

satisfies

Hi −Ei = 〈φi|H − E|φi〉 (3)

and will be composed of a kinetic energy term and a diagonal optical potential. The ‘interaction potential’
Vi is then defined to be everything inH not included inHi, so

Hi − Ei + Vi = H− E. (4)

This construction givesVi which have vanishing diagonal matrix elements〈φi|Vi|φi〉 = 0.
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2.1 Coupled Equation Set forN bound state pairs

If we take the model Schrödinger’s equation[H − E]Ψ = 0, and project separately onto the different
basis statesφi, we derive the set of equations

[Ei −Hi]ψi(Ri) =
∑

j 6=i

〈φi|H − E|φj〉ψj(Rj). (5)

which couple together the unknown wave functionsψi(Ri). The matrix element〈φi|H−E|φk〉 has two
different forms, depending on whether we expand

H− E = Hi − Ei + Vi (the ‘post’ form)

= Hj − Ej + Vj (the ‘prior’ form).

Thus

〈φi|H − E|φj〉 = V post
ij + [Hi − Ei]Kij(post) (6)

or = V prior
ij +Kij[Hj − Ej](prior)

where

V post
ij ≡ 〈φi|Vi|φj〉, V prior

ij ≡ 〈φi|Vj|φj〉, Kij ≡ 〈φi|φj〉. (7)

The overlap functionKij = 〈φi|φj〉 in equation (6) arises from the well-known non-orthogonality be-
tween the basis statesφi andφj if these are in different mass partitions. We will see below that this term
disappears in first-order DWBA, and can be made to disappear in second-order DWBA, if the first and
second steps use the prior and post interactions respectively.

2.2 N-step DWBA

If the coupling interactionsVi in equation (6) are weak, or if the back coupling effects of these interac-
tions are already included in the optical potentials of the prior channel, then it becomes reasonable to use
a distorted wave Born approximation (DWBA). This approximation always feeds flux ‘forwards’ in the
sequence1→ 2→ · · · → N +1 neglecting the back couplings. In the elastic channel the wave function
is governed by the optical potential defined there, and the wave function in thei’th channel is governed
by the equation

[Ei −Hi]ψi(Ri) =
j=i−1
∑

j=1

〈φi|H − E|φj〉ψj(Rj) (8)

Initial channel:

[E1 −H1]ψ1(R1) = 0

Second channel:

[E2 −H2]ψ2(R2) = 〈φ2|H − E|φ1〉ψ1(R1) (9)
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If the prior interaction is used, the right hand side becomes

= 〈φ2|V1|φ1〉ψ1 + 〈φ2|φ1〉[H1 − E1]ψ1

= 〈φ2|V1|φ1〉ψ1 asψ1 is on-shell. (10)

= V prior
21 ψ1 (11)

Final channel: (c = N + 1)

[Ec −Hc]ψc(Rc) =
j=c−1
∑

j=1

〈φc|H − E|φj〉ψj(Rj) (12)

If the postinteraction had been used for all the couplings to this last channel, then

[Ec −Hc]ψc(Rc) =
j=c−1
∑

j=1

〈φc|Vc|φj〉ψj + [Hc − Ec]
j=c−1
∑

j=1

〈φc|φj〉ψj (13)

so

[Ec −Hc]χc(Rc) =
j=c−1
∑

j=1

V post
cj ψj (14)

where

χc(Rc) = ψc +
j=c−1
∑

j=1

〈φc|φj〉ψj

= 〈φc|Ψ〉
Note that, as all theφj are square-integrable and hence decay faster thanr−1 at large radii, theψc and
χc are the same asymptotically. They differ only by an ‘off-shell transformation’, and hence yield the
same (on-shell) scattering amplitudes. The equation forχc has no non-orthogonality terms once thepost
interaction is used in the final channel: this is what is meantby saying that the final channel is ‘effectively
on-shell’.

These results imply that inN -step DWBA, some non-orthogonality terms can be made to disappear if
‘prior’ interactions are used for the first step, and/or if ‘post’ interactions are used for the final step.
This means that the non-orthogonality term never appears inthe first-order DWBA, irrespective of the
choice of prior or post forms. In second-order DWBA, the prior-post combination must be chosen [7] to
avoid the non-orthogonality terms. It should be also clear that non-orthogonality terms will have to be
evaluated if the DWBA is continued beyond second order.

2.3 Full CRC solution by iteration

There are a number of different ways of solving the CRC equations with the non-orthogonality terms
present: for discussions of different approaches see refs.[8], [41] and the survey of ref.[ch. 3][33].

There are schemes available which can iterate all channels with an arbitrary choice of post or prior
interactions for all the couplings. Define

θij = 0 or 1 : presence of post on thej → i coupling, (15)

so1− θij = 1 or 0 : presence of prior. (16)
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The following iterative scheme [42] (n=1,2,..) on convergence then solves the CRC equations (5):

For n =0, start with

ψ
(0)
i = δ(i, i0)ψelastic (17)

δS
(0)
i = δψ

(0)
i = 0 (18)

For n = 1→ N + 1 (for N -step DWBA) solve

[Hi − Ei]χ
(n)
i + S

(n−1)
i = 0 (19)

with

S
(n−1)
i =

∑

j

[θijV
post
ij + (1− θij)V

prior
ij ] ψ

(n−1)
j − δS(n−1)

i (20)

then calculate for subsequent iterations

δψ
(n)
i =

∑

j

θij〈φi|φj〉ψ(n−1)
j (21)

δS
(n)
i =

∑

j

(1− θij)〈φi|φj〉[S(n−1)
j + [Hj − Ej]δψ

(n)
j ] (22)

ψ
(n)
i = χ

(n)
i − δψ(n)

i (23)

This scheme avoids numerical differentations except in an higher-order correction toδSi that arises in
some circumstances.

When the non-orthogonality terms are included properly, itbecomes merely a matter of convenience
whether post or prior couplings are used, for one, two, and multistep calculations. The equivalence of
the two coupling forms can be confirmed in practice (see, for example, refs.[42], and [9]), and used as
one check on the accuracy of the numerical methods employed.

3 Wave Functions for Scattering and Bound States

In order to describe details of the nuclear transitions realistically, it is necessary to specify in sufficient
detail the initial and final states of the nuclei involved. Tostart with, the excitation energies, spins
and parities of all the states in each mass partition need to be specified, along with the nuclear masses,
charges and relativeQ-values of the partitions. Eachpair projectile and target excited states is then a
distinct channel with its own scattering wave function and boundary conditions. The initial projectile
and target states will select one such channel as the ‘incoming channel’, with its boundary conditions
specifying an incoming plane wave. All channels (includingthe incoming channel) will have outgoing
spherical waves. Particular attention must be given to the consistent placement ofiL factors in these
definitions.

The individual nuclear states are then specified in sufficient detail for the particular reaction mechanisms
involved. It is not necessary to specify the full quantum mechanical states of all the nucleons in the
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nucleus, but rather, only the states of those changed in the reactions being considered. In particular,
one and two-nucleon wave functions will have to be described, if those nucleons are to be transferred
to other nuclei. If a nuclear state consists of a particle of spin s bound outside a nucleus with possible
core statesφI , then the bound state radial wave functionsuℓsjI(r) will have to be found by solving a
coupled-channels set of equations for negative energy eigen-solutions. If the particle isnotbound, in the
other hand, then its continuum range of energies must be discretised into a finite collection of ‘bin’ states
which can be scaled to unit normalisation. If the nuclear state consists of two particles of intrinsic spins
s1 ands2 outside a core, then it is usually specified by a shell-model or by a Sturmian-basis calculation
in terms of the independent coordinatesr1 andr2. To calculate transfer rates, however, the two-particle
wave functions need to be given in terms of the collective coordinates (usuallyr = 1

2(r1 + r2) and
ρ = r1 − r2). In order to use the states in a reaction calculation, therefore, equations are given for the
transformation from the independent coordinates.

When we have calculated the scattering wave functions, or atleast their asymptotic parts in terms of their
S-matrix elements, we can find the cross sections for each outgoing pair of projectile and target states in
each partition. Furthermore, if the initial projectile hasnon-zero spinJp, then the effect on these cross
sections of polarisation of the projectile is specified by the tensor analysing powersTkq (for 1 ≤ k ≤ 2Jp

and0 ≤ q ≤ k). Integrated cross sections and fusion polarisations can also be found using theS-matrix
elements.

3.1 Total wave function

In each partitionκ of the system into a projectile of massAκp and a target of massAκt, the coupling
order is

L + Jp = J; J + Jt = JT , (24)

which may be defined by writing

ΨMT

κJT
= | (L Jp)J, Jt;JT 〉 (25)

whereJp = projectile spin,Jt = target spin,L = orbital partial wave, andJT = total system angular
momentum.

The set{κpt, (L Jp)J, Jt;JT } will be abbreviated by the single variableα. Thus, in each partition,

ΨMT

κJT
(Rκ, ξp, ξt) =

∑

LJpJJt

MµpMJµt

φJp(ξp) φJt(ξt) i
LYM

L (R̂κ) 1
Rκ

f κJT

(LJp)J,Jt
(Rκ)

〈LMJpµp|JMJ〉 〈JMJJtµt|JTMT 〉 (26)

hereRκ = radial coordinatefrom the targetto the projectile in partitionκ, ξp = internal coordinates of
projectile,ξt = internal coordinates of target, and

f κJT

(LJp)J,Jt
(R) ≡ fα(R) (27)

are the radial wave functions. TheiL factors arise from the spherical Bessel expansion of the incoming
plane wave. Some formalisms include extra powers ofi in the equation (26), in order to make the
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coupling interactionsVα:α′ real. Inelastic coupling interactions can be made real (forinteger-valued
spins, at least), by including a factoriJp+Jt in the definition ofΨ, and transfer couplings can be made
real by including a factoriℓ for orbital angular momentumℓ of the bound particle state in this partition.
In a general purpose code [34], however, there may be clashesbetween these different conventions. The
ground state of7Li, for example, would have a factor ofi3/2 on the rotational model convention, but a
factor of i1 if the state were regarded as aℓ = 1 bound state of aα core and a triton cluster. It seems
simplest, therefore, to omit these addition phase factors completely. The coupling interactions can very
often be made real, nevertheless, if theiL factors are included explicitly in the CRC equations, as in the
next section.

The wave functionΨ could also have been defined using the ‘channel spin’ representation (as in [43])
Ψ = |L, (JpJt)S;JT 〉, which is symmetric upon projectile→ target interchange except for a phase factor
(−1)S−Jp−Jt . This would simplify the subsequent description of the coupling elements in section 4, as
the formulae for projectile mechanisms and target mechanisms would differ only by this phase factor.
However, the channel spin representation has the disadvantage that the projectile spin-orbit force is not
diagonal in this basis. This would not matter if coupled-channels solutions were always sought, but one
of the advantages of sometimes solving the CRC equations iteratively is that the DWBA solutions of first
and second order (etc.) may be obtained. In order for the partially-iterated CRC solutions to reproduce
the results of DWBA codes, it is necessary to treat spin-orbit forces without approximation, and since
spin-orbit forces almost always are those of the projectile, the asymmetric representation of channel (24)
is advisable.

Identical Nuclei If one partition (κ say) is identical to anotherκ except that the projectile and target
nuclei are exchanged, then the total wave function should beformed from(1 + πPκκ′) times the above
expression, whereπ = ±1 is the intrinsic parity of the two nuclei under exchange. A simple method
of dealing with this exchange is to first form the wave function of equation (26), and then operate with
(1 + πPκκ′) on both the wave functions and the S-matrix elements, beforecross sections are calculated.
This is equivalent to the replacement

fα(R)← fα(R) + cα,α′fα′(R) (28)

where

cα,α′ = π(−1)LδL,L′(−1)JT +L−J−J ′

Ĵ Ĵ ′W (JpL
′JTJt;JJ

′) (29)

with α′ = |(L′Jt)J
′, Jp;JT 〉.

3.2 Coupled equations

The CRC equations are in many cases of the form

[Eκpt − TκL(Rκ)− Uκ(Rκ)] fα(Rκ) =
∑

α′,Γ>0

iL
′−L V Γ

α:α′(Rκ′)fα′(Rκ′)

+
∑

α′,κ′ 6=κ

iL
′−L

∫ Rm

0
Vα:α′((Rκ), Rκ′)fα′(Rκ′)dRκ′ (30)
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where the kinetic energy term is

TκL(R) = − h̄2

2µκ

(

d2

dR2
− L(L+ 1)

R2

)

, (31)

Uκ(Rκ) is the diagonal optical potential with nuclear and Coulomb components, andRm is a radius limit
larger than the ranges ofUκ(Rκ) and of the coupling terms. The equations (30) are in their most common
form: they become more complicated when non-orthogonalities are included by the method of section
2.3. TheV Γ

α:α′(Rκ′) are the local coupling interactions of multipolarityΓ, and theVα:α′(Rκ, Rκ′) are the
non-local couplings between mass partitions that arise from particle transfers.

For incoming channelα0, thefα(Rκ) satisfy the boundary conditions

fα(Rκ′) =Rκ>Rm

i

2

[

δαα0H
(−)
Lηα

(Kα(Rκ))− Sα0αH
(+)
Lηα

(Kα(Rκ))
]

(32)

whereH(−)
Lη andH(+)

Lη are the Coulomb functions [44] with incoming and outgoing boundary conditions
respectively. The asymptotic kinetic energies are

Eκpt = E +Qκ − ǫp − ǫt (33)

for excited state energiesǫp, ǫt and Q-valueQκ in partitionκ, and

Kα =

√

√

√

√

[

2µκ

h̄2Eκpt

]

(34)

whereµκ = AκpAκt/(Aκp +Aκt) is the reduced mass in the channel with partitionκ, and

ηα =
2µκ

h̄2

ZκpZκte
2

2Kα
(35)

is the Sommerfeld parameter for the Coulomb wave functions.

3.3 Single-nucleon states

If φJM (ξ) is a core+particle bound state, then for coupling order|(ℓs)j, I; JM〉 , the wave function is

φJM (ξc, r) =
∑

ℓjI

AjIJ
ℓsj [φI(ξc)ϕℓsj(r)]JM (36)

=
∑

ℓjI,mµmsmℓ

AjIJ
ℓsj 〈jmIµ|JM〉 φIµ(ξc) 〈ℓmℓsms|jm〉Y mℓ

ℓ (r̂)φms
s

1

r
uℓsjI(r)

whereξc = core internal coordinates,φImu(ξc) = core internal state,φms
s = particle internal spin state,

uℓsjI(r) = particle core radial wave function, andAjIJ
ℓsj is the coefficient of fractional parentage.
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3.3.1 Bound States

If the single-particle is bound at negative energyE around the core, then its wave function may be found
as the eigen-solution of a given potential:

[Tℓ(r) + V (r) + ǫI −E]uℓsjI(r) +
∑

ℓ′j′I′, Γ>0

V Γ
ℓsjI:ℓ′sj′I′(r)uℓ′sj′I′(r) = 0 (37)

with boundary conditionsuℓsjI(0) = 0 and, asr ≥ Rm, of uℓsjI(r) ∝ Wℓ(kIr) whereWℓ(ρ) is the
Whittaker function andk2

I = 2µ|E − ǫI |/h̄2 is the asymptotic wave number.

If the core cannot be excited, then these coupled equations reduce to one uncoupled equation, but solving
this equation can still be regarded as a special case of the coupled bound state problem. Eigen-solutions
can be found by solving either for the bound state energyE, or by varying the depth of the binding
potential. In general, however, we can choose to vary any multipole of any part of the binding potentials
(except the Coulomb component), so one method of solving thefull coupled bound-state problem will
be outlined below.

To define the phase (±1) of the overall wave function, some convention has to be adopted. One com-
ponent (say that around a coreI = 0 state) can be set to either positive towards the origin (r → 0), or
positive towards large distances (r → ∞). The former choice is made in the FRESCO code, following
the Mayer-Jensen phase convention, which is also used for harmonic oscillator wave functions in many
structure calculations.

3.3.2 Solution of the Coupled-Channels Eigenvalue Problem

When, for example, the problem is to find the bound state of a particle in a deformed potential, then
several channels with different angular momenta will be coupled together. There are various techniques
for calculating the wave functions of these bound states: for a review see ref. [10]. The Sturmian
expansion method [45] can be used, or the coupled equations can be solved iteratively. The Sturmian
method has the advantage thatall solutions in the deformed potential are found, where sometimes the
iterative method has difficulty in converging to a particular solution if there are other permitted solutions
near in energy. The iterative method has the advantage that the radial wave functions (once found) are
subject only to the discretisation error for the Schrödinger’s equation, and are not dependent on the
(time-consuming) diagonalisation of large matrices, often of the order of 100 or more. As they satisfy
the correct boundary conditions independently of the size of a basis-state set, the radial wave functions
of the iterative method therefore more accurately reflect the details of the coupling potentials and of the
core excitation energies. As nuclear reactions are often confined to the surface region, it is important to
satisfy the exterior boundary conditions as accurately as possible.

A method for solving the uncoupled eigenstate problem has tobe included in a reaction code in any
case, and since it can be generalised as described in this section to solving the coupled problem, it
seems a worthwhile facility to have available. Bound statesfrom a previous Sturmian solution can still
be included as explicit linear combinations of the single particle (uncoupled) basis states used in the
Sturmian expansion.

The general problem of finding eigen-solutions of a setM coupled-channels equations can be represented
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as the problem of findingλ such that the equations

[

d2

dr2
− ℓi(ℓi + 1)

r2

]

ψi(r) +
M
∑

j=1

[Uij(r) + λVij(r)]ψj(r) = 0 (38)

with boundary conditions

ψi(R) = aiWℓiηi
(kiR) (39)

ψi(R + δR) = aiWℓiηi
(ki(R+ δR)) (40)

ψi(0) = 0 (41)

(with k2
i ≡ κ2

i + θλ andηi ≡ nui/(2ki)) for given partial wavesℓi, fixed potentialsUij(r), variable
potentialsVij(r),matching radiusR, and Coulomb proportionality constantsνi. The energy constantsκ2

i

are the asymptotic components of the diagonalUii(r), andθ is the asymptotic component of the diagonal
Vii(r) (assumed all equal).

The solution begins by constructing the trial integration functions for a trial value ofλ, on either side of
an intermediate matching pointr = ρ:

f in
i;j(r) by integratingr from h to ρ,

starting withf in
i;j(h) = δi,j h

ℓi+1/(2ℓi + 1)!!, and

fout
i;j (r) by integratingr fromR in to ρ,

starting withf in
i;j(R) = δi,j Wℓiηi

(ki(R+ δR)).

The intermediate pointr = ρ should be chosen where the wave functions are oscillatory, to avoid having
to integrate outwards in the classically forbidden region.

The solution is therefore

ψi(r) =

{

∑

j bjf
in
i;j(r) for r < ρ

∑

j cjf
out
i;j (r) for r ≥ ρ, (42)

and the matching conditions are the equality of the two expressions and their derivatives atr = ρ. The
normalisation is still arbitrary, so we may fixc1 = 1. In general the equations (38) have no solution as
λ is not exactly an eigenvalue. The method therefore uses the discrepancy in the matching conditions
to estimate howλ should be changed toλ + δλ to reduce that discrepancy, and iterates this process to
reduceδλ.

Thus at each iteration we first solve as simultaneous equations the 2M -1 of the matching conditions
∑

j

bjf
in
i;j(ρ) =

∑

j

cjf
out
i;j (ρ) for all i (43)

∑

j

bjf
in
i;j(ρ)

′ =
∑

j

cjf
out
i;j (ρ) for all i 6= 1 (44)

along withc1 = 1 for the 2M unknownsbi, ci. If the functionψi(r) is then constructed using equation
(42), there will be a discrepancy as

ψ′
in ≡ ψ1(r)|r<ρ 6= ψ′

out ≡ ψ1(r)|r>ρ, (45)
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and this difference will generateδλ via

δλ
M
∑

ij

∫ R

0
ψi(r)Vij(r)ψj(r)dr = ψ1(ρ)[ψ

′
out − ψ′

in]. (46)

It is necessary while iterating in this manner to monitor thenumber of nodes in one or more selected
components of the wave function, as in general a given potential will have different eigensolutions with
different numbers of radial nodes. When the iterations haveconverged to some accuracy criterion on the
size ofδλ, the set of wave functions can be normalised in the usual manner:

M
∑

i

∫ ∞

0
|ψi(r)|2dr = 1 (47)

and perhaps some of the componentsi omitted if their contribution to this norm is below some preset
threshold.

3.3.3 Continuum States

If the initial and/or final single-particle states of a transfer step are unboundE − ǫ > 0, the use of single
energy eigenstatesφk(r) will result in calculations of the transfer form factors which will not converge,
as the continuum wave functions do not decay to zero asr →∞ sufficiently fast as to have square norms.
One way [39], [40] of dealing with this divergence is to take continuum states not at a single energy, but
averaged over a range of energies. These ‘bin’ states that result are square integrable, and if defined as

Φ(r) =

√

2

πN

∫ k2

k1

w(k)φk(r)dk (48)

with N =

∫ k2

k1

|w(k)|2dk (49)

for some weight functionw(k), then they are normalised〈Φ|Φ〉 = 1 provided a sufficiently large maxi-
mum radius forr is taken, and that theφk are eigensolutions of a potential which is energy-independent.
They are orthogonal to any bound states, and are orthogonal to other bin states if their energy ranges do
not overlap. The construction can be easily generalised to give coupled-channels bin wave functions.

The weight functionw(k) is best chosen ([40] p. 148) to include some of the effects known to be caused
by the variation ofφk(r) within the bin rangek1 ≤ k ≤ k2. If w(k) = exp(−iδk), wheredeltak is the
scattering phase shift forφk(r), then it includes the effects of the overall phase variations ofφk, at least
in the DWBA limit. If, however,w(k) = exp(−iδk) sin δk ≡ T ∗

k , whereTk is theT -matrix element
for φk(r), then it includes in addition a scale factor which is useful if the |Tk| varies significantly, as it
does, for example, over resonances. Both choices result in areal-valued wave functionΦ(r) (for real
potentials), which is computationally advantageous.

If the maximum radius (Rm say) is not sufficiently large, then the wave functionsΦ will not be nor-
malised to unity by the factors given in equation (48). The rms radius of a bin wave function increases
as the bin widthk2 − k1 decreases, approximately as1/(k2 − k1). These bin constructions can be used
to describe the narrow resonant wave functions of say the3+ state in6Li, or the 7/2− state in7Li, but
these states will require a large limiting radiusRm unless thew(k) = T ∗

k weighting factor is used to
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Rm δE = 0.1 MeV δE = 0.5 MeV
(fm) e−iδk T ∗

k e−iδk T ∗
k

10 0.105 0.923 0.108 0.977
20 0.109 0.939 0.132 0.985
40 0.112 0.951 0.258 0.993
80 0.122 0.971 0.411 0.996
160 0.142 0.986 0.614 0.998

Figure 1: Normalisations of a continuum bin state. For this3+ state in6Li at 0.71 MeV, Saxon-Woods
potentials were used withV = 77.05 MeV,R = Rc = 1.2 * 41/3 fm., anda = 0.65 fm.

emphasise the increase in the interior wave function over the resonance. The3+ state in6Li at 0.71 MeV,
for example, for which the resonance width is approximately40 keV, yields the normalisations shown in
3.3.3. It can be seen that without a scale factor which emphasises the resonance peak, very large radii
Rm will be needed to obtain unit normalisation.

3.4 Two-particle bound states

3.4.1 Centre-of-mass coordinates

If φJT (ξc, r,ρ) is a two-particle bound state with total spinJ and isospinT , then for coupling order
|{ L, (ℓ, (s1s2)S)j}J12, I; J〉 we have

φJM =
∑

LℓS
jJ12I

AJ12IJ
LjJ12

φIµI
(ξc).φ

σ1
s1
φσ2

s2
Y Λ

L (r̂) Y µ
ℓ (ρ̂)

1

rρ
u12(r, ρ)

〈J12M12IµI |JM〉〈LΛjm12|J12M12〉〈ℓµSΣ|jm12〉〈s1σ1s2σ2|SΣ〉 (50)

whereAJ12IJ
LjJ12

is the coefficients of fractional parentage, andφσ1
s1
φσ2

s2
are the intrinsic spins of the two

particles.

Note that two neutron transfer can be viewed as the transfer of a ‘structured particle’(ℓ, (s1s2)S)j, and
then becomes similar to single-particle transfers of above.

The radial wave functionu12(r, ρ) can be given either as a cluster product of single-particle wave func-
tionsu12(r, ρ) = ΦL(r)φℓ(ρ), or input directly as a two-dimensional distribution e.g. from a Faddeev
bound-sate calculation, or calculated from the correlatedsum of products of single-particle states, as in
the next section.

3.4.2 Independent Coordinates

Two-particle states from shell-model calculations or fromSturmian-basis calculations [11], and are then
usually described by means of the|r1, r2〉 coordinates, and then transformed internally into the centre-
of-mass coordinates|r,ρ〉 of equation (50) usingri = xir+yiρ. For equal mass particles,x1 = x2 = 1,
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andy1 = −y2 = 1
2 . The second description is as

ϕ12(r1, r2) =
∑

i

ci |(ℓ1(i), s1)j1(i), (ℓ2(i), s2)j2(i); J12T 〉 (51)

→
∑

u

ci
∑

LℓSj

|L, (ℓ, (s1s2)S)j;J12T 〉φJ12T,i
L(ℓS)j(r, ρ) (52)

The transformation of thei’th component in the cluster basis is

φJ12T,i
L(ℓS)j(r, ρ) = 〈L, (ℓ, (s1s2)S)j;J12T | (ℓ1(i), s1)j1(i), (ℓ2(i), s2)j2(i); J12T 〉 (53)

×〈[YL(r̂)Yℓ(ρ̂)]λ | [ϕℓ1s1j1(r1)ϕℓ2s2j2(r2)]J12T 〉 (54)

where (suppressing thei indices for clarity)

〈L, (ℓ, (s1s2)S)j;J12T |(ℓ1, s1)j1, (ℓ2, s2)j2; J12T 〉 =

∑

λ

λ̂Ŝĵ1ĵ2







ℓ1 ℓ2 λ
s1 s2 S
j1 j2 J12







1 + (−1)ℓ+S+T

√

2(1 + δℓ1,ℓ2δj1,j2)
ĵλ̂W (LℓJ12S;λj)(−1)ℓ+L−λ. (55)

The radial overlap integral can be derived by means of harmonic-oscillator expansions [12], with the
Bayman-Kallio expansion [13] or using the Moshinsky solid-harmonic expansion[71]. This last method
gives

Kλ
ℓL:ℓ1ℓ2(r, ρ) = 〈[YL(r̂)Yℓ(ρ̂)]λ | [ϕℓ1(r1)ϕℓ2(r2)]

λ〉

=
∑

n1n2

(

2ℓ1 + 1
2n1

) 1
2
(

2ℓw + 1
2n2

) 1
2

(x1r)
ℓ1−n1(y1ρ)

n1(x2r)
n2(y2ρ)

ℓ2−n2

×
∑

Q

q
Q
ℓ1ℓ2

(r, ρ) (2Q+ 1) ℓ̂1ℓ̂2 ˆℓ1 − n1
ˆℓ2 − n2 L̂ℓ̂

×
∑

Λ1Λ2

(

ℓ1 − n1 n2 Λ1

0 0 0

)(

ℓw − n2 n1 Λ2

0 0 0

)(

Λ1 L Q
0 0 0

)(

Λ2 ℓ Q
0 0 0

)

×(−1)ℓ1+ℓ2+L+Λ2(2Λ1 + 1)(2Λ2 + 1)W (Λ1LΛ2ℓ;Qλ)







ℓ1 − n1 n2 Λ1

n1 ℓ2 − n2 Λ2

ℓ1 ℓ2 λ






.(56)

where

(

a
b

)

is the binomial coefficient (see Appendix A).

The kernel functionqℓ1ℓ2Q(r, ρ) which appears in this expression is the Legendre expansion of the
product of the two radial wavefunctions in terms ofu, the cosine of the angle betweenr andρ:

q
Q
ℓ1,ℓ2

(r, ρ) =
1

2

∫ +1

−1

uℓ1(r1)

r1

ℓ1+1uℓ2(r2)

r2

ℓ2+1

PQ(u)du (57)
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3.5 Scattering Amplitudes

The Rutherford amplitude for pure Coulomb scattering (withno e2iσ0 factor) is

Fc(θ) = − η

2k

exp(−2iη ln(sin θ/2))

sin2 θ/2
(58)

The Legendre coefficients for the scattering to the projectile stateJ ′
p and target stateJ ′

t from initial
projectile stateJp and target stateJt are given by

AL′

m′M ′;mM =
∑

L,J,J ′,JT

〈L0Jpm|Jm〉〈JmJtM |JTMT 〉

〈L′ML′J ′
pm

′|J ′ML′ +m′〉〈J ′ML′ +m′J ′
tM

′|JTMT 〉
4π

k

√

k′

µ′
µ

k
ei(σL−σ0)ei(σ

′

L′
−σ′

0)

(

i

2

)

[

δα,α′ − SJT

α,α′

]

√

2L+ 1

4π
Yc(L

′,ML′) (59)

whereYc(L,M) is the coefficient ofP |M |
L (cos θ)eiMφ in YM

L (θ, φ), σL = arg Γ(1 + L + iη) is the
Coulomb phase shift,α′ refers to the primed valuesL′J ′

pJ
′
tk

′µ′ etc., andα refers to the unprimed values
LJpJtkµ.

For each outgoing channelJ ′
p, J

′
t, we may then calculate the angular-dependent scattering amplitudes

fm′M ′:mM (θ) = δJp,J ′

p
δJt,J ′

t
Fc(θ) +

∑

L′

AL′

m′M ′:mMP
m′+M ′−m−M
L′ (cos θ) (60)

in terms of which the differential cross section is

dσ(θ)

dΩ
=

1

(2Jp + 1)(2Jt + 1)

∑

m′M ′mM

|fm′M ′:mM (θ)|2 . (61)

The near-side and far-side decompositions [14] of this cross section are defined by the same process,
with PM

L (u) replaced by1
2 [PM

L (u) ± 2i/πQM
L (u)] respectively. The Coulomb scattering of equation

(58) is included in the near-side component [15].

The spherical tensor analysing powersTkq describe how theoutgoingcross section depends on thein-
comingpolarisation state of theprojectile. If the spherical tensorτkq is an operator with matrix elements

(τkq)mm′′ =
√

2k + 1〈Jpmkq|Jpm
′′〉,

we have

Tkq(θ) =
Tr(fτkqf

+)

Tr(ff+)
(62)

= k̂

∑

m′M ′mM fm′M ′:mM (θ)∗〈Jpmkq|Jpm
′′〉fm′M ′:m′′M (θ)

∑

m′M ′mM |fm′M ′:mM (θ)|2 (63)
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The polarisations in the ‘transversity frame’ [16] are then

TT10 =
√

2iT11 (64)

TT20 = −1

2
(T20 +

√
6T22) (65)

TT30 = −1

2
(
√

3iT31 +
√

5iT33). (66)

The S-matrix elements can also be used to directly calculatethe integrated cross sections

σ =

∫

4π

dσ(θ)

dΩ
dΩ (67)

to give

σ =
1

k2

k′

µ′
µ

k

4π

(2Jp + 1)(2Jt + 1)

∑

JT α α′

(2JT + 1)
∣

∣

∣SJT

α,α′

∣

∣

∣

2
. (68)

The fusion cross section is defined as that amount of flux whichleaves the coupled-channels set because
of the imaginary parts of the optical potentials. If the incoming projectile is not spherical, then the
fusion rate will depend on its orientation, and hence on the magnetic substate quantum numberm. One
can therefore define thefusion polarisationas the distributionσfus

m , which can be calculated from the
S-matrix elements as

σfus
m =

π

k2

∑

JT≥m

(2JT + 1)

×


1− 1

2Jt + 1

∑

J ′

pL′Mω

∣

∣

∣

∣

∣

∑

LJ

〈JpmJ −m|L0〉〈JmJtM |JTM +m〉eiσLSJT ω
α,α′

∣

∣

∣

∣

∣

2


 (69)

whereω is the parity (±1) of the coupled-channels set for each total angular momentum JT

Partial Wave Interpolation:Heavy ion reactions typically involve a range of partial wavesL up to several
hundred or more, especially when Coulomb excitations dominate the highest partial waves. In such cases
it is often advantageous to solve the coupled channels sets (30) for, say, everyn’th value of JT , and
interpolate the intermediate values. Different values ofn can be used in different reaction regions:n can
be small (1 or 2) for the grazing partial waves, and up to 5 or 10for the Coulomb-dominated peripheral
processes, and can be adjusted for the required balance between speed and accuracy.

This interpolation may be performed on the S-matrix elements themselves, or on the Legendre amplitudes
of equation (59) In this second method (that used in ref. [34]), cubic spline interpolations are used. The
main factor limiting the accuracy of this process is that therate of change withJT of the Coulomb phase
shiftsexp i(σL+σ′L′) doesnotdiminish asJT increases. For that reason, it is advisable to interpolate not
on theAL′

of equation (59), but on ãAL′

defined with arevisedphase shift factorexp i(σL−σ′L′). Since
L andL′ both tend to be nearJT , it is only thedifferencethe phase shifts which limits the accuracy of
the interpolation. It will therefore be more accurate for smaller projectile and target spins, and incoming
and outgoing channels with similar Sommerfeld parameterη (equation 35).
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4 Coupling Interactions

When two nuclei interact, a variety of kinds of elastic and inelastic potentials may be needed to describe
their interaction. As well as the scalar nuclear attractions and scalar Coulomb repulsions, if either of the
nuclei has spinJ 6= 0, then there can be higher-order tensor interactions which couple together the spin
and the orbital motion. If a nucleus has spinJ ≥ 1

2 , then there can be a spin-orbit componentVls(R)2l ·J
in the HamiltonianH. and if its spin is one or greater (J ≥ 1), there can be tensor forces of various kinds.
The most commonly used tensor force is aTr potential of the formVTr(R)R2(R,R).S2(J, J). Similar
tensor forces are also generated if the projectile and target spins coupled together can reachJp + Jt ≥ 1:
such is the case with the tensor force between the proton and the neutron within the deuteron.

Inelastic potentials (4.2) arise when one or both of the nuclei have permanent deformations (as seen in
their intrinsic frame), or are vibrationally deformable. The inelastic potentials which come from rotating
a permanently deformed nucleus are described in the Hamiltonian by terms of the form

Vλ =
∑

µ

Vλ(R)Dλ
µ0Y

µ
λ (R̂) (70)

where the form factorsVλ(R) have both nuclear and Coulomb components for angular momentum trans-
fersλ. Their nuclear component is approximately proportional tothe derivative of the scalar potential
between the two reaction partners. Simultaneous excitations of both nuclei are also possible (see e.g.
[17]), but have not been included in the present code. Vibrational excitations of a nucleus have more
complicated form factors in general [1], but can still be expanded in the form of equation (70). For the
more intricate level schemes of strongly-deformed nuclei,it will in general be necessary for each allowed
transition to have its own transition rate specified independently of a particular rotational or vibrational
model.

Inelastic potentials also arise when one of the nuclei can bedecomposed into a ‘core’ + ‘valence particle’
structure 4.3), such that the opposing nucleus interacts with the two components with distinct potentials
acting on distinct centres-of-mass. The valence particle can be a single nucleon, as in the case of17O =
16O + n, or it can be a cluster of nucleons, as in6Li =α + 2H, or 7Li =α + 3H. In all these cases, there
arise inelastic potentials which can re-orient the ground state of the composite nucleus, or can excite the
valence particle into higher-energy eigenstates.

Finally, transfer interactions (4.4) arise when the reaction brings about the transfer of a valence particle
from one nucleus into a bound state around the other. As the incoming and outgoing projectiles have
different centres-of-mass, with the targets likewise, thecorrect treatment of transfer interactions requires
taking into account the effects of recoil and of the finite ranges of the binding potentials. These result
in the coupling form factors becoming non-local, so that they must be specified by the two-dimensional
kernel functionsVα:α′(Rκ, Rκ′) in equation (30). They also require that the coupled equations be solved
by iteration, as will be discussed in section 5. If the effects of recoil are neglected, the ‘no-recoil’ (NR)
approximation is obtained, but in general[72] this is inaccurate in ways which are difficult to predict.
For that reason the NR approximation is not included in the present code. For many light-ion reactions,
however, another ‘zero-range’ approximation is available, and this does remove many of the finite-range
requirements. Alternatively, a first-order correction forthe finite-range effects may be estimated, to give
the ‘local energy approximation’. These two special cases are discussed at the end of the section.
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4.1 Matrix Elements of Tensor Forces

This section presents the matrix elements for spin-orbit forces and a variety of tensor interactions. The
radial form factorsVQ(R) which multiply these matrix elements are not specified, since these are usually
determined by a fitting procedure in an optical-model searchcode, and a wide variety of parameterised
forms have been used.

We shall use the|(LJp)J1, Jt;JT 〉 representation for the order of coupling the spins, as in equation (24).

4.1.1 Spin-orbit Interactions

For the projectile spin-orbit forceL · Jp

〈

(LJp)J1, Jt;JT |L · Jp|(L′Jp)J
′
1, Jt;JT

〉

= δLL′δJ1J ′

1

1

2
[J1(J1 + 1)− L(L+ 1)− Jp(Jp + 1)] (71)

This convention amounts to a2l · s spin-orbit force, rather than one based onl · σ. These are the same
for nucleons and spin12 nuclei, but it means, for example, that the spin-orbit strengths for deuterons and
7Li will have to be decreased as they haves = 1 and 3/2 respectively.

For the target spin-orbit interactionL · Jt, we first transform

|(LJp)J1, Jt;JT 〉 = (−1)J1−L−Jp|(JpL)J1, Jt;JT 〉
= (−1)J1−L−Jp

∑

J2

|Jp, (LJt)J2;JT 〉Ĵ1Ĵ2W (JpLJTJt;J1J2) (72)

so

〈

(LJp)J1, Jt;JT |L · Jt|(L′Jp)J
′
1, Jt;JT

〉

= (−1)J1−J ′

1+L′−LĴ1Ĵ
′
1

∑

J2

(2J2 + 1)W (JpLJTJt;J1J2)W (JpLJTJt;J
′
1J2)

δLL′

1

2
[J2(J2 + 1)− L(L+ 1)− Jt(Jt + 1)]

4.1.2 Second-rank Tensor Forces

We use the notations of ref. [18]:

〈S‖S2‖S〉 =
1√
6

3K2 − S(S + 1)

〈SK20|SK〉 for any |K| ≤ S, (73)

and

〈L′‖R2‖L〉 =

√

2

3

L̂

L̂′
〈L 0 2 0 |L′ 0 〉 (74)
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for the reduced matrix elements of the second-rank spin and radial tensors respectively. With the projec-
tile Tr tensor forceR2 · S2(JpJp), the coupling interactions are

〈

(LJp)J1, Jt;JT |R2 · S2(JpJp)|(L′Jp)J
′
1, Jt;JT

〉

= δJ1J ′

1
L̂Ĵp(−1)J1−L−JpW (LL′JpJp; 2J1)〈L‖R2‖L′〉〈Jp‖S2‖Jp〉 (75)

For the targetTr tensor forceR2 · S2(JtJt) the coupling interactions are

〈

(LJp)J1, Jt;JT |R2 · S2(JtJt)|(L′Jp)J
′
1, Jt;JT

〉

= (−1)J1−J ′

1+L′−L
∑

J2

Ĵ1Ĵ
′
1(2J2 + 1)W (JpLJTJt;J1J2)W (JpL

′JTJt;J
′
1J2)

×L̂Ĵt(−1)J2−L−JtW (LL′JtJt; 2J2)〈L‖R2‖L′〉〈Jt‖S2‖Jt〉 (76)

For the combined target-projectileTr tensor forceR2 · S2(JpJt) the coupling interactions are

〈

(LJp)J1, Jt;JT |R2 · S2(JpJt)|(L′Jp)J
′
1, Jt;JT

〉

=
∑

SS′

Ĵ1Ĵ
′
1ŜŜ

′W (LJpJTJt;J1S)W (L′JpJTJt;J
′
1S

′)

×L̂Ŝ (−1)JT −L−S′

W (LL′SS′; 2JT )〈L‖R2‖L′〉〈(JpJt)S‖S2‖(JpJt)S
′〉 (77)

where the second-rank reduced matrix element is

〈(JpJt)S‖S2‖(JpJt)S
′〉 = Ŝ′2̂ĴpĴt







S Jp Jt

S′ Jp Jt

2 1 1







√

Jp(Jp + 1)
√

Jt(Jt + 1)

4.2 Inelastic Excitations

4.2.1 Nuclear Rotational Model

Consider a deformed nucleus with deformation lengthsδλ. The effect of these deformations can be ex-
pressed as a change in the radius at which we evaluate the optical potentials, the change depending on the
relative orientations of the radius vector to the intrinsicorientation of the nucleus. Deformation lengths
are used to specify the these changes, rather than fractional deformationsβλ, to remove a dependence
on the ‘average potential radius’RU . This is desirable because often the real and imaginary parts of the
potential have different radii, and it is not clear which is to be used. It also removes a dependence on
exactly how the ‘average radius’ of a potential is to be defined.
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WhenU(R) is the potential shape to be deformed, the coupling interaction is

V(ξ,R) = U(R− δ(R̂, ξ)) (78)

where the ‘shift function’ has the multipole expansion

δ(R̂′) =
∑

λ6=0

δλY
0
λ (R̂′) (79)

(R̂′ is the vectorR̂ in the body-centred frame of coordinates defined byξ). Transforming to the space-
fixed frame of reference, and projecting onto the spherical harmonics, the multipole expansion becomes

V(ξ,R) =
∑

λµ Vλ(R)Dλ
µ0Y

µ
λ (R̂) (80)

whereVλ(R) = 1
2

∫+1
−1 U( r(R, cos θ) )Y µ

λ (θ, 0) d(cos θ) (81)

andr(R,u) = R−
√

2λ+1
4π Pλ(u)δλ + ǫ (82)

with ǫ =
∑

λ δλ
2/(4πRU ) (83)

The correctionǫ is designed ([45]) to ensure that the volume integral of the monopole potentialV0(R) is
the same as that ofU(R), and is correct to second order in the{δλ}}.

When the{δλ}} are small, the above multipole functions are simply the firstderivatives of theU(R)
function:

Vλ(R) = − δλ√
4π

dU(R)

dR
, (84)

with the same shape for all multipolesλ > 0.

4.2.2 Coulomb Deformations

The deformations of the Coulomb potential can also be definedby theδλ, but unfortunately an average
potential radius is again introduced. The dependence on models for average radii can be reduced by
defining the Coulomb deformations in terms of a reduced matrix element such as that of Brink and
Satchler [19], or that of Alder and Winther [20]. For the present purposes we adopt that of Alder and
Winther, as it is hermitian upon interchanging the forward and reverse directions. We include, however,
a simple phase factor to keep it real-valued. The new deformation parameter is calledM(Eλ) and has
units ofe.fmλ. In terms of the Alder and Winther reduced matrix element it is

M(Eλ) = iI−I′+|I−I′| × 〈I ′‖Eλ‖I〉 (85)

and is directly related to the observable electro-magnetictransition rate without any model-dependent
parameters entering (except a sign):

M(Eλ) = ±
√

(2I + 1)B(Eλ, I → I ′). (86)

A model dependent radius parameterRc only enters in the relation to the deformation lengths of the
rotational model:

M(Eλ, I → I ′) =
3ZδλRc

λ−1

4π
iI−I′+|I−I′|

√
2I + 1 〈IKλ0|I ′K〉 (87)
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for transitions from a state of spinI to one of spinI ′ in a rotational band of projectionK in a nucleus of
chargeZ. WithinK=0 bands,M(Eλ, 0→ I) = M(Eλ, I → 0) have the same sign asδλ.

The only disadvantage of using reduced matrix elements as input parameters in this way is that the
transitions in a rotational band do not all have the same matrix elementsM(Eλ, I → I ′), even when the
deformation length is constant.

The radial form factors for Coulomb inelastic processes maybe simply derived from the multipole ex-
pansion of|r− r′|−1, giving

V
c
λ(R) = M(Eλ)

√
4πe2

2λ+ 1

{

Rλ/Rc
2λ+1 (R ≤ Rc)

1/Rλ+1 (R > Rc)
(88)

remembering that a factorδλRc
λ−1 = βλRc

λ is already included in the matrix element of equation (87)
which appears in this form factor. This form factor is to be multiplied by the angular momentum coupling
coefficients of the next section, and also by the charge of theopposing nucleus.

4.2.3 Angular Momentum Coupling Coefficients

The basic rotational coupling coefficient, withVλ given by equation (70), is

XJλ
LI:L′I′(R) = 〈LI;J |Vλ|L′I ′;J〉 (89)

The Coulomb form factorsVc
λ(R) have coupling coefficients

XJλ
LI:L′I′(R) = L̂L̂′(−1)J−I′−L+L′

W (LL′II ′;λJ)〈L0L′0|λ0〉 V
c
λ(R) (90)

whereas the nuclear form factorsVλ(R) defined for a rotational band with projectionK have coupling
coefficients

XJλ
LI:L′I′(R) = L̂L̂′(−1)J−I′−L+L′

W (LL′II ′;λJ)〈L0L′0|λ0〉 Vλ(R)

Î ′〈I ′Kλ0|IK〉. (91)

For projectile inelastic excitation, this coupling coefficient may be used directly as

〈(LJp)J, Jt;JT |Vλ|(L′J ′
p)J

′, J ′
t;JT 〉 = δJt,J ′

t
δJ,J ′ XJλ

LJp:L′J ′

p
(R) (92)

whereas for target excitations,

〈(LJp)J, Jt;JT |Vλ|(L′J ′
p)J

′, J ′
t;JT 〉 = δJp,J ′

p
(−1)J−J ′−L+L′

Ĵ Ĵ ′

×
∑

J2

(2J2 + 1)W (JpLJTJt;JJ2)W (JpL
′JTJ

′
t;J

′J2)X
J2λ
LJt:L′J ′

t
(R) (93)

4.3 Single Particle Excitations

When a nucleus consists of a single particle outside a core, the state of the particle can be disturbed by
the interaction with1 another nucleus, as the force of that nucleus can act differentially on the particle
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and the core. IfVcc(Rc) andVp(r
′) are the interactions of the second nucleus with the core and particle

respectively, then the excitation coupling from state|(ℓ′L′)λ〉 to state|(ℓL)Λ〉 is given by the single-
folding expression

XΛ
ℓL:ℓ′L′(R) = 〈(ℓL)Λ|Vcc(Rc) + Vp(r

′)− Uopt(R)|(ℓ′L′)Λ〉 (94)

whereUopt(R) is the optical potential already defined for these channels.This optical potential is sub-
tracted to avoid double counting of either the Coulomb or thenuclear potentials, rather than disabling the
potentials which have already been defined. This means that the ‘monopole’ potentialV0(R, r) (to be
constructed) will have no long-range Coulomb component, and will not disturb the matching of the wave
functions to the asymptotic Coulomb functions. It also means that if a nuclear well has already been
defined, the new monopole form factor will be simply the difference between this well and that desired
well calculated from the folding procedure.

If the potentialsVcc(Rc)andUopt(R) contain only scalar components, then theR- and r- dependent
Legendre multipole potentials can be formed as

VK(R, r) =
1

2

∫ +1

−1

[

Vcc(Rc) + Vp(r
′)− Uopt(R)

]

.PK(u)du (95)

where

K = the multipole moment,

u = r̂ · R̂ is the cosine of the angle betweenr andR,

r = aR + br is the particle-core vector,

andRc = pR + qr is the core-nucleus vector.

The coupling form factor between statesuℓ′(r) anduℓ(r) is then

XΛ
ℓL:ℓ′L′(R) =

1

2

∑

K

∫ Rm

0
uℓ(r)

∗
VK(R, r)uℓ′(r)dr(−1)Λ+K ℓ̂L̂ℓ̂′L̂′

× (2K + 1)W (ℓℓ′LL′;KΛ)

(

K ℓ ℓ′

0 0 0

)(

K L L′

0 0 0

)

(96)

4.3.1 Projectile Single-Particle Mechanisms

If the projectilehas the particle - core composition, then the coupling interaction is

V JT

α:α′(R) = 〈(LJp)J, Jt;JT |V|(L′J ′
p)J, Jt;JT 〉 (97)

where the initial (primed) and final (unprimed) states are

φJ ′

p
(ξp, r) =

∑

ℓ′sj′

A
j′IpJ ′

p

ℓ′sj′ |(ℓ′s)j′, Ip;J ′
p〉 andφJp(ξp, r) =

∑

ℓsj

A
jIpJp

ℓsj |(ℓs)j, Ip;Jp〉, (98)

respectively, andIp is the (fixed) spin of the core. Then

V JT

α:α′(R) =
∑

FΛIp
jj′ℓℓ′

ĵĵ′(2F + 1)ĴpĴ ′
p(2Λ + 1)W (ℓsJpIp; jF )W (ℓ′sJ ′

pIp; j
′F )

×Aj′IpJ ′

p

ℓ′sj′ A
jIpJp

ℓsj W (LℓJF ; ΛJp)W (L′ℓ′JF ; ΛJ ′
p)×XΛ

ℓL:ℓ′L′(R) (99)
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4.3.2 Target Single-Particle Mechanisms

If the targethas the particle - core composition, then the coupling interaction is

V JT

α:α′(R) = 〈(LJp)J, J
′
t ;JT |V|(L′Jp)J, Jt;JT 〉 (100)

where the initial (primed) and final (unprimed) states are

φJ ′

t
(ξt, r) =

∑

ℓ′sj′

A
j′ItJ ′

t

ℓ′sj′ |(ℓ′s)j′, It;J ′
t〉 andφJt(ξt, r) =

∑

ℓsj

AjItJt

ℓsj |(ℓs)j, It;Jt〉, (101)

respectively, andIt is the (fixed) spin of the core in the target. Then

V JT

α:α′(R) =
∑

Itjj′ℓℓ′

A
j′ItJ ′

t

ℓ′sj′ AjItJt

ℓsj

×
∑

Ja

(2Ja + 1)Ĵ ′
tĴt W (JjJT It;JaJt) W (J ′j′JT It;JaJ

′
t)

×
∑

Λsa











L ℓ Λ
Jp s sa

J j Ja





















L′ ℓ′ Λ
Jp s sa

J ′ j′ Ja











XΛ
ℓL:ℓ′L′(R) (102)

4.4 Particle Transfers

4.4.1 Finite Range Transfers

To calculate the coupling term that arises when a particle istransferred, for example from a target bound
state to being bound in the projectile, we need to evaluate source terms of the form

Sα(R) =

∫ ∞

0
〈(LJp)J, Jt;JT |V|(L′J ′

p)J
′, J ′

t;JT 〉 fJT

(L′J ′

p)J ′,J ′

t
(R′)dR′ (103)

where the initial (primed) state has a composite target withinternal coordinatesξ′t ≡ {ξt, r′} : φJ ′

t
(ξt, r

′) =
|(ℓ′s)j′, Jt;J

′
t〉 and the final (unprimed) state has a composite projectile with internal coordinatesξp ≡

{ξp′ , r} : φJp(ξ
′
p, r) = |(ℓs)j, J ′

p;Jp〉.

TheV is the interaction potential, of which the prior form is

V = Vℓsj(r) + Ucc(Rc)− Uα′(R′) (104)

and the post form is

V = Vℓ′sj′(r
′) + Ucc(Rc)− Uα(R) (105)

whereVβ(r) is the potential which bindsϕβ(r), Uα(R) are the optical potentials, andUcc(Rc) is the
‘core-core’ potential, here between thep′ and thet nuclei. TheVβ will be real, but theUα andUcc will
typically have both real and imaginary components.

This source functionSα(R) evaluates a non-local integral operator, as it operates on the functionfα′(R′)
to produce a function ofR. This section therefore derives the non-local kernelVα,α′(R,R′) so that the
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source term, which initially involves a five dimensional integral overr and R̂, may be calculated by
means of a one-dimensional integral overR′:

Sα(R) =

∫ Rm

0
Vα,α′(R,R′)fα′(R′)dR′. (106)

Note that when the initial and final single-particle states are real, then the kernel function is symmetric

Vα,α′(R,R′) = Vα′,α(R′, R), (107)

whereas if the states are unbound and complex-valued, then the kernel function is hermitian provided the
interaction potentialV is real. If the particle states and the interaction potential are complex, then both
the forward and reverse kernels must be each calculated independently.

When the potentialV contains only scalar potentials, the kernel calculation can be reduced to the problem
of findingXΛ

ℓL:ℓ′L′(R,R′) such that, given

〈(LJp)J, Jt;JT |V|(L′J ′
p)J

′, J ′
t;JT 〉 =

∑

ΛF

(−1)s+J ′

p−F Ĵ Ĵ ′
t ĵF̂ ĴpΛ̂











L′ J ′
p J ′

ℓ′ s′ j′

Λ F J











×W (Jtj
′JTJ

′; J ′
tJ)W (lsJpJ

′
p; jF )W (LℓJF ; ΛJp)〈ℓL; Λ|V|ℓ′L′; Λ〉, (108)

the integral operator〈ℓL; Λ|V|ℓ′L′; Λ〉 has the kernel functionXΛ
ℓL:ℓ′L′(R,R′). Note that theF summa-

tion may be performed in an inner loop that does not evaluate the kernel function.

Now ther andr′ are linear combinations of the channel vectorsR andR′: r = aR + bR′ andr′ =
a′R + b′R′ where, whenϕℓ(r) is the projectile bound state,

a = νtω, b = −ω, a′ = ω, b′ = −νpω, (109)

with νp ≡ Aκ′p/Aκp , νt ≡ Aκt/Aκ′t , andω = (1− νpνt)
−1 . Whenϕℓ(r) is the target bound state

a = −νpω, b = ω, a′ = −ω, b′ = νtω, (110)

with νp ≡ Aκp/Aκ′p , νt ≡ Aκ′t/Aκt , andω = (1 − νpνt)
−1 . The ‘core-core’ vector is always

Rc = r′ − r = (a′ − a)R + (b′ − b)R′.

Thus the spherical harmonicsYℓ(r̂) andYℓ′(r̂
′) can be given in terms of the spherical harmonicsYn(R̂)

andYn′(R̂′) by means of the Moshinsky [71] solid-harmonic expansion (see also refs. [21] and [46]

Y m
ℓ (r̂) =

√
4π
∑

nλ

c(ℓ, n)
(aR)ℓ−n(bR′)n

rℓ
Y m−λ

ℓ−n (R̂)Y λ
n (R̂′)〈ℓ− nm− λnλ|ℓm〉 (111)

where

c(ℓ, n) =

√

√

√

√

1

2n+ 1

(

2ℓ+ 1
2n

)

,

with

(

x
y

)

the binomial coefficient (Appendix A).
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We now perform the Legendre expansion

V
uℓsj(r)

rℓ+1

uℓ′sj′(r
′)

r′ℓ
′+1

=
∑

T

(2T + 1)qT
ℓ,ℓ′(R,R

′)PT (u) (112)

where the Legendre polynomialsPT (u) are functions ofu, the cosine of the angle betweenR andR′,
by usingr = (a2R2 + b2R′2 + 2abRR′u)1/2 (with r′ analogously) in the numerical quadrature of the
integral

qT
ℓ,ℓ′(R,R

′) =
1

2

∫ +1

−1
V
uℓsj(r)

rℓ+1

uℓ′sj′(r
′)

r′ℓ
′+1

PT (u)du (113)

The quadrature methods used here, and the accuracy attained, are discussed in section 5.3.

Using the Legendre expansion, the radial kernel function

XΛ
ℓL:ℓ′L′(R,R′) =

|b|3
2

∑

nn′

c(ℓn)c(ℓ′n′)RR′(aR)ℓ−n(bR′)n(a′R)ℓ
′−n′

(b′R′)n
′

×
∑

T

qT
ℓ,ℓ′(R,R

′)(2T + 1)(−1)Λ+T+L+L′

ℓ̂ℓ̂′ ˆ(ℓ− n) ˆ(ℓ′ − n′)n̂n̂′L̂L̂′

×
∑

KK ′

(2K + 1)(2K ′ + 1)

(

ℓ− n n′ K
0 0 0

)(

ℓ′ − n′ n K ′

0 0 0

)(

K L T
0 0 0

)(

K ′ L′ T
0 0 0

)

×
∑

Q

(2Q+ 1)W (ℓLℓ′L′; ΛQ)W (KLK ′L′;TQ)







ℓ′ Q ℓ
n′ K ℓ− n

ℓ′ − n′ K ′ n






(114)

These formulae can also be used withV ≡ 1 to calculate the kernel functionsKΛ
ℓL:ℓ′L′(R,R′) for the

wave function overlap operatorKij ≡ 〈φi|φj〉 needed in evaluating the non-orthogonality terms of
section 2.3.

One disadvantage of this method of calculating the two-dimensional radial kernelsXΛ
ℓL:ℓ′L′(R,R′) is

that in the process of transforming the solid harmonics ofr andr′ into those ofR andR′, there appears
summations containing high powers of the coefficientsa, b, a′ andb′ These products will become larger
than unity by several orders of magnitude, will the summed result is typically of the order of unity. This
means that the summations involve large cancellations, andas the degree of cancellation gets worse for
largeℓ andℓ′, the cancellation places a limit on the maximum valueℓ + ℓ′ of the transferred angular
momentum.

One way of circumventing this loss of accuracy is that proposed by Tamura and Udagawa [47], whereby
solid harmonics are avoided in favour of a suitable choice ofaxes to render it practical to calculatem-
dependent form factors directly. If thez axis is not (as usual) parallel to the incident momentum, but
set parallel toR, and thex′ axis set in the plane determined byR andR′, then ther andr′ vectors are
also in this plane. The radial kernels may then be calculatedas a sum ofm-dependent integrals over
cos θ = R̂ · R̂′, as before the cosine of the angle betweenR andR′. Although there are hence a larger
number of radial integrals to be performed, there are no large cancellations between the separate terms,
and there is no limit on the size of the transferred angular momentum.

A third method [22] of calculating the transfer form factorsis that involving expanding the initial and

25



final channel wave functions in terms of spherical Bessel functions:

fα(R) =

N(L)
∑

n=1

aα(Kn)R jL(KnR). (115)

Using then the Fourier transform of the bound state wave functions uℓ(r) and uℓ′(r
′), a transfer T-

matrix element may be written as a sum of a set of one-dimensional integrals over a momentum variable.
Efficient codes [23] have been written for CCBA calculationsof transfers induced by light ions (up to
masses∼ 10 to 15 amu).

This plane-wave expansion method has however several disadvantages when it comes to solving prob-
lems with coupled reaction channels. If transfers are to be calculated at each iteration of the coupled
equations, then the expansion (115) has to be recalculated at each step. Another difficulty is that the
method is not suited to heavy-ion induced transfers, as the large degree of absorption inside the nuclei
in these cases requires a large number of momentum basis statesKn to be represented accurately. The
plane-wave expansion becomes uneconomical, and sometimesthe determination of theaα(Kn) coeffi-
cients becomes numerically ill-conditioned

We will see in section 5.3.1, however, that if the cancellation which occurs in the first method is moni-
tored, and steps taken to keep it to a minimum, a workable code[34] results which can produce accurate
results for L-transfers up to around 6.

4.4.2 Zero Range Transfers

When the projectile wave functionsϕℓ(r) are alls-states (ℓ = 0 and the interaction potential is of zero-
range(Vϕ(r) ∼ D0δ(r) ), then the form factorXΛ

ℓL:ℓ′L′(R,R′) of equation (114) can be simplified
to

XL
0L:ℓ′L′(R,R′) = D0

(−1)L
′−ℓ′

L̂

ℓ̂′L̂L̂′

√
4π

(

ℓ′ L L′

0 0 0

)

1

R
uℓ′sj′(R)

b2

a
δ(aR + bR′). (116)

This can be made local by defining a new step sizeh′ = −ah/b ≡ νth in the stripping channelα′.

4.4.3 Local Energy Approximation

If the interaction potential is of small range, though not zero, and the projectile still contains onlys-
states, then a first-order correction may be made to the aboveform factor. This correction will depend on
the rate of oscillation of the source wave functionfJT

(L′J ′

p),J ′,J ′

t
(R′) within a ‘finite-range effective radius’

ρ. The rate of oscillation is estimated from the local energy in the entrance and exit channels, and the
result [24] is to replaceuℓ′sj′(R) in the previous section by

uℓ′sj′(R)→ uℓ′sj′(R)

[

1 + ρ2 2µ
(p)
α

h̄2

(

Uα′(R) + Vℓ′sj′(R)− Uα(R) + ǫα
)

]

(117)

where theU(R) are the optical potentials, withVℓ′sj′(r) the single-particle binding potential in the target.

Theµ(p)
α is the reduced mass of the particle in the projectile, andǫα its binding energy.
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At sub-Coulomb incident energies [25], the details of the nuclear potentials in equation (117) become
invisible, and as the longer-ranged Coulomb potentials cancel by charge conservation, the form factor
can be simplified to

D0uℓ′sj′(R)→ uℓ′sj′(R)D0

[

1 + ρ2 2µ
(p)
α

h̄2 ǫα

]

= uℓ′sj′(R)D (118)

where

D = D0

[

1 +
(

ρk(p)
α

)2
]

(119)

is the effective zero-range coupling constant for sub-Coulomb transfers.

The parametersD0 andD can be derived from the details of the projectile bound stateϕ0ss(r). The
zero-range constantD0 may be defined as

D0 =
√

4π

∫ ∞

0
rV (r)u0ss(r)dr. (120)

The parameterD, on the other hand, reflects the asymptotic strength of the wave functionu0ss(r) as
r →∞, as it is the magnitude of this tail which is important in sub-Coulomb reactions:

u0ss(r) =r→∞
2µ

(p)
α

h̄2

1√
4π

De−k
(p)
α r. (121)

It may be also found, using Schrödinger’s equation, from the integral

D =
√

4π

∫ ∞

0

sinh(k
(p)
α r)

k
(p)
α

V (r)u0ss(r)dr. (122)

From this equation we can see that as the range of the potential becomes smaller,D approachesD0.
The ‘finite-range effective radius’ρ of equation (119) is thus some measure of the mean radius of the
potentialV (r).

5 Numerical Solutions

This section discusses the methods used to solve the coupledreaction channels equations (30), when in
general there are both local couplingsV Γ

α:α′(Rκ) and non-local kernelsVα:α′(Rκ, Rκ′). Now a group
of m equations can be solved ‘exactly’ (subject only to radial discretisation errors) by finding [53] a set
of m linearly independent groups of solutionsgi,k(R), and taking a linear combination of these which
satisfies the required boundary conditions. This method is only practicable, however, if there are not too
many equations (the numerical effort can rise asm3), and if there are only local couplings. For in that
case the independent solutions can be found in a single outward ‘sweep’ ofm2 radial functions. Non-
local couplings mean, unfortunately, that the source termsat a given radius depend on the wave functions
at other radii both larger and smaller, so that this ‘exact’ method becomes impractical.

In many cases of interest in nuclear physics, however, the non-local couplings are not too strong, and can
be treated as successive perturbations. They can then be applied iteratively until further applications have
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progressively smaller efffects, and the solutions have converged (to some preset criterion of accuracy).
Some failures of convergence can remedied by the use of Padéapproximants.

When both local and non-local couplings are present, and thelocal couplings are too strong to allow
an iterative scheme to converge, a combination of the exact and iterative schemes is possible. In this
approach, several channels can be ‘blocked’ together, and treated as one unit during the iterations, while
solving the couplingswithin the block by the exact method.

There are several other features of typical nuclear reaction calculations which simplify the numerical
methods:

1. If the sum of the incoming projectile and target spins is greater than one, then solutions will often
be required for thesameset of CRC equations, only with different boundary conditions.

2. The diagonal potentialsUκ(Rκ) usually have a significant imaginary component for smallRκ, and
hence damp the solutionsfα(Rκ) in this region. This enables lower radial cutoffs to be used for
Rκ near zero, with little loss of accuracy.

3. The bound statesuℓsjI(r) used in transfer reactions decay exponentially outside thesurface region
of the nuclei. This means that the integrand in equation (113) for the transfer kernels will often
decay exponentially both as|R−R′| increases, and asu ≡ cosθ ≡ R̂ · R̂′ decreases from unity.

5.1 Integration of the Radial Equations

If the non-local interactionsVα,α′(R,R′) in the CRC equations (30) are present, then it will always be
necessary to solve the coupled channels by iteration. With the local couplingsV Γ

α,α′(R), however, we
have a choice whether to iterate, or to include them in the exact solutions of the close-coupling method.
A simple option is to allow a specifiable numberb of channels to be coupled exactly, with the remainder
only being fed after one or more iterations. This would be useful, for example, if the channels for the low-
lying states of a highly-deformed target were included in this block ofb channels, and if the remaining
channels (e.g. for transfers) were not fed by more than 2 or 3 steps beyond this initial block. Restricting
these iterations to one is equivalent to solving a CCBA model.

Whether the coupled equations are of the simpler form of equation (30), or of the more complex form of
section 2.3, a particularn’th iteration will require solving set ofm equations of the form

d2

dR2
fi(R) =

b
∑

j=1

Cij(R)fj(R) + Si(R) for i = 1 · · · b, (123)

and
d2

dR2
fi(R) = Cii(R)fi(R) + Si(R) for i = b+ 1 · · ·m, (124)

whereSi(R) is the source term constructed by means of the wave functionsf
(n−1)
i (R) of previous

iterations :

Si(R) =
m
∑

j=jmin

Cij(R)f
(n−1)
j (R) (125)

wherejmin = b+ 1 if i ≤ b andjmin = 1 if i > b.
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IT
1 g1,0 g2,0 .. gm,0 inhomogeneous solns.
2 (not used) gb+1,b+1 .. gm,m uncoupled regular solns.
3 g1,1 g2,1 ..
4 g1,2 g2,2 .. coupled regular solutions
↓ .. .. .. (equations1→ b)

b+ 2 g1,b g2,b .. gb,b

Figure 2: Independent Solution Vectors: Layout of the independent radial wave functions for solving
a system ofm equations, of whichb are to coupled exactly. Each entry represents a vector ofn radial
points, and the entries in bold are those with a non-zero initial values for their outward radial integration.

These coupled differential equations can be solved, following the method of ref. [53] by forming the
linearly independent solution setsgi,k(R), where thek’th solution consists of a set of all channels (i =
1 · · ·m) which is made independent of the other sets by having a distinctive starting value

gi,k(Rmin − h) = 0, gi,k(Rmin) =
1

(2Li + 1)!!
(KiRmin)

Li+1δi,k (126)

for the initial conditions in the radial integration of equations (123). For this integration, the code
FRESCO uses the modified Numerov method, and other codes suchas Tamura’s JUPITOR [26] have
used Euler’s method to start with near the origin (R=0), and then Störmer’s 6-point method to continue.
A general discussion of numerical integration schemes is given in Melkanoff et al. [27], along with error
analyses of the different methods.

The independent solutionsgi,k(R) are required form+1 values ofk. The solution vectors fork = 1 · · ·m
are solved starting with equation (126) but withnosource term in the equation (123): these will contribute
to the complementary solution of the homogeneous equation.We also need a particular solutiongi,0(R)
of the inhomogeneous equation, solvedwith the source terms but withno non-zero values in equation
(126). These partial solutions may be conveniently laid outas in figure 5.1. If, however, it is known
that the wave functions of certain channels are not required(if, for example, they are only fed in the last
iteration), then it is not necessary to store their components in the array, for their S-matrix elements can
still be calculated.

The solutionsfi(R) are the linear combination of thegi,k(R)

fi(R) =
m
∑

k=0

akgi,k(R) (127)

satisfying the boundary conditions of equation (32) atR = Rm and sayR = Rm − 5h. The coefficient
a0 is always unity, to match the source terms correctly. The S-matrix elements are a by-product of the
linear matching equations (32).

Note that the independent solutionsgi,k(R) for k ≥ 1 need only be calculated thefirst time this coupled
channels set is used. If they are stored as in figure 5.1, subsequent iterations need only recalculate the
first row (IT=1) as the source terms vary. Furthermore, if there are multiple incoming channels for
fixed total spinJT and parityω, then solutions after the first can also use thegi,k(R) already stored.
The first iteration for these subsequent incoming channels will in fact not require any radial integrations
whatsoever, merely finding a new set of{ak} from the new matching conditions, and recalculating the
sum (127) if the wave functions are required.

29



Tolsma and Veltkamp [54] point out one difficulty with this method, which is that if the couplingsCi,j

are strong fori 6= j, then the linear independence of thegi,j(R) will be reduced asR increases through
a classically forbidden region. This is because the components with negative local kinetic energy will
generally consist of an exponentially growing part and an exponentially decreasing part. The former is
responsible for the tendency to destroy the initially generated linear independence of the solution vectors.
The longer the integration continues through a classicallyforbidden region, the stronger this tendency
will be; for instance, it will occur in scattering problems of nuclear physics with energies near or below
the Coulomb barrier. It will also occur if inelastic form factors are used which are not approximately
derivatives of the diagonal potential, but which extend more than usual into the interior of the nucleus
that is classically forbidden because of the centrifugal potentials.

Tolsma et al. [54] propose a stabilization procedure to monitor and if necessary re-orthogonalise the
solution vectors. If this were not done, there would be largecancellations in the sum of equation (127),
resulting if severe in complete loss of accuracy of the S-matrix elements and the solution wave functions.

A simpler approach is to increase the starting radiusRmin at which the radial integrations begin. It is
advisable in any case for reasons of stability at small radiito have a minimum radius proportional to
some angular momentumL typical of the coupled channels set:

Rmin ≥ cLh (128)

for some constantc in the region of 1 or 2, whereh is the radial step size. This constant could be
increased to avoid the loss of independence in the present problem, but this is not always satisfactory, as
the absorptive effects of the optical potentials at intermediate radii might thereby be lost. An alternative
remedy (adopted in ref.[34]) is to have a specifiable radial cutoff R(c)min for theoff-diagonal coupling
terms only. This allows the absorption in the diagonal potentials to be effective at all radii outsideRmin

of equation (128), but does not allow any strong coupling terms to lead to loss of independence until
some larger radius which can be adjusted to keep the loss of accuracy to an acceptable level. It thus
should be a regular policy in a computer code to integrate theequations (123) to a precision of at least 12
to 16 significant figures, to monitor the degree of cancellation in equation (127), and to notify the user
should this approach within 2 or 3 powers of ten of the precision limit of the computer. Note that it is
notnecessary for the coupling termsCij(R) (etc) to beaccurateto full machine precision, only that they
should be consistentlyprecisewhen converted to that precision.

5.2 Convergence of the Iterative Method

The iterative method of solving the CRC equations (5, 30) will converge if the couplings are sufficiently
small. The procedure will however diverge if the the couplings are too large, or if the system is too
near a resonance. On divergence, the successive wave functionsψ(n)

i will become larger and larger as
n increases, and not converge to any fixed limit. Unitarity will of course be violated as the S-matrix
elements will become much larger than unity.

5.2.1 Improving the Convergence Rate

There are several ways of dealing with this problem:
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1. Solving some of the local couplings exactly by the methodsof section 5.1, and iterating only on
the non-local couplings and the remaining local couplings.

2. Solving all the channels simultaneously via a very lar ge system of linear equations, with each
radial point in each channel as a separate unknown [28].

3. Find a separable expansion for the non-local kernels, so that they can be included exactly in the
coupled-channels solution [49].

4. Expand the wave functions with a range of basis states of Coulomb and (say) Gaussian [50] or
Airy [5] functions, and take the coefficients in this basis asthe unknowns in a system of linear
equations.

5. Use Padé approximants to accelerate the convergence of the sequenceS(n)
α of S-matrix elements

[51, 52].

6. Iterating the equations sequentially as in [51] and [52],rather than all equations as a block.

7. The inwards-outwards method of refs. [29], [30] and [37].

For the range of heavy and light-ion reactions that we are considering here, the methods (1) and (5) above
have been adopted.

The method (2) is not used because of the size of the matrix that results. Initially, the matrix would be
sparse, with selected elements away from the diagonal beingnon-zero because of the coupling potentials.
The kinetic energy operators occupy a band of width three along the diagonal. Although a Gaussian
elimination procedure would allow potentials of arbitrarycoupling strength to be included, it will fill in
large regions of the matrix as the solution proceeds, and this makes the storage requirements prohibitive.

The separable expansion method (3), while useful for light-ion reactions, is unsatisfactory for heavy-ion
transfers. This is because if the masses of the initial and final nuclei become large relative to the mass
of the transferred particle, the form factor for the transfers becomes more nearly local. As we approach
the no-recoil limit (which makes the form factors exactly local) a separable expansion of a nearly-local
kernel will require a large number of terms. In the limit of a local form factor, the separable expansion
will require the same number of terms as there are radial points.

The method (4) of expanding the wave functions in Gaussians could have been used, provided the char-
acteristic widths in R-space of the basis states were chosenin accordance with the wave numberKα in
the relevant channel. This requirement is less severe with light-ion reactions, where the wave numbers
are typically≤ 1 fm−1. For heavy-ion reactions, however, the oscillation rates are much larger, and a
more sensible method is to expand in terms of Airy functions that are depend explicitly on the local wave
number over some radial region.

It is very useful to be able to iterate the coupled equations in a conventional manner, as then 1, 2 and
3 step DWBA results (etc.) can be recovered by stopping the iterations short of full convergence. This
recovery of DWBA results is more difficult with sequential iteration (6), but both that method and the
method of (7) would be definitely advantageous when, say, exciting a long rotational band by successive
application of a quadrupole coupling. Using Padé acceleration has the advantages that it need only be
employed if ordinary iterations are seen to diverge, and that it transforms the previously-divergent results
with little new computational effort.
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5.2.2 Pad́e Approximants for Sequence Extrapolation

A given sequenceS0, S1, · · · of S-matrix elements that result from iterating the CRC equations can be
regarded as the successive partial sums of the polynomial

f(λ) = S0 + (S1 − S0)λ+ (S2 − S1)λ
2 + · · · (129)

evaluated atλ=1. This polynomial will clearly convergence forλ sufficiently small, but will necessarily
diverge if the analytic continuation of thef(λ) function has any pole or singularities inside the circle
|λ| > 1 in the complexλ-plane. The problem that Padé approximants solve is that offinding a com-
putable approximation to the analytic continuation of thef(λ) function. This is accomplished by finding
a rational approximation

P[n,m](λ) =
p0 + p1λ+ p2λ

2 + · · ·+ pnλ
n

1 + q1λ+ q2λ2 + · · ·+ qmλm
(130)

which agrees with thef(λ) function in the region where the latter does converge, as tested by matching
the coefficients in the polynomial expansion ofP[n,m](λ) up to and including the coefficient ofλn+m.

There are many different ways [48] of evaluating the coefficients{pm, qn}, but for the present problem
we can use Wynn’sǫ-algorithm [31], which is a method of evaluating the upper right half of the Padé
table atλ=1 directly in terms of the original sequenceS0, S1, · · ·.

5.2.3 Wynn’s epsilon Algorithm

Initialising ǫ(j)0 = Sj andǫ(j)−1 = 0, we form an array using the relationǫ(j)k+1 = ǫ
(j+1)
k−1 + (ǫ

(j+1)
k −

ǫ
(j)
k )−1. Thus we can construct the table given the second column from the initial sequenceSj. The table

then gives the transposed upper right half of the Padé table, including the diagonal:

ǫ
(j)
2k = P[k,k+j](1). (131)

Experience has shown that for typical sequences the most accurate Padé approximants are those near the
diagonal of the Padé table, and these are just the right-most ǫ(0)2k in theǫ table.

When accelerating avectorS-matrix elementsSj , with a component for each coupled channel, then it
is important to accelerate the vector as a whole. Wynn [32] pointed out that this can be done using the
Samuelson inverse

x−1 = (x · x∗)−1x∗ (132)

wherex∗ is the complex conjugate ofx. Otherwise there will be problems when iterating (say) a two-
channel system with alternating backwards and forwards coupling, because of zero divisors in theǫ
algorithm.
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5.3 Transfer Form Factors

5.3.1 The Cancellation Problem

As discussed in section 4.4.1, the summations overT in equation (114) involve large cancellations, and
as the degree of cancellation gets worse for largeℓ andℓ′, this places a limit on the maximum valueℓ+ℓ′

of the transferred angular momentum.

Typically, however, the transfer form factors are only needed to be accurate to around 0.1 to 1%, so if
computer arithmetic is used which is accurate to 14 or 16 decimal digits, then cancellations up to 12 or 13
orders of magnitude should in principle not result in catastrophic errors in the transfer rates. With careful
programming, this accuracy can be achieved. What is necessary is to be careful that all quantities in the
equations (114, 113) above which depend on the Legendre order T are calculated to the full computer
precision. It is not necessary, for example, for the channelwave functionsfα(R), the bound state wave
functionsuℓsjI(r) or the quadrature of the integral (113) to be accurate to fullprecision (which in any
case would be impossible). It is only necessary that all these quantities haveexactly the same computer
precisionwhen the coefficients overT (theqT

ℓ,ℓ′(R,R
′)) are evaluated, and when the sums overT (in

equation 114) are performed. This will require principallythat the ‘radial framework’ that givesr and
r′ in terms ofR andR′ be accurate to full machine precision, as also the Racah algebra coefficients in
equation (114). In fact, the channel wave functionsfα(R) and the bound state wave functionsuℓsjI(r)
may be calculated with reduced precisions using shorter computer words and faster arithmetic should
these be available. It is also not necessary for the coefficients and sums overT be consistent to full
accuracy for differentR andR′ values, as the large cancellations only occur between differentT values
for each separateR andR′ combination.

Since the accuracy of the quadrature in the equation (113) isnot critical to the overall accuracy of the
transfers, calculations may be speeded up if we economise onthe range of theu variable and on the
number of intermediate steps required. Even in light ion reactions it is not necessary to integrateu to
−1 (θ to 180◦) as was done in the code LOLA [72] for example. An efficient procedure to adopt is that
used in the DWBA code DAISY[55], where, for each successiveR value, the code monitors the rate of
decay of the integrand asθ increases. For a given accuracy criterion, an estimate can then be made of an
adequate upper limit for theθ integration at the nextR value. Typically, the upper limits ofθ decrease
monotonically asR increases from 0 to the upper limitRm. Because the integrand is largest forθ=0,
the accuracy of the angular integration for smallθ is improved by a change of variable fromu to x as in
ref.[55]:

θ =
1

4
(3x2 + 1)xθmax (133)

for 0 ≤ x ≤ 1. The quadrature overu of equation (113) then becomes

qT
ℓ,ℓ′(R,R

′) =
1

2

∫ 1

0
V
uℓsj(r)

rℓ+1

uℓ′sj′(r
′)

r′ℓ
′+1

PT (u) sin(θ)
dθ

dx
dx. (134)

The parameterθmax is adjusted for each successive value ofR. according to the rate at which the
integrand is observed to decay asθ increases, as described earlier.
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5.3.2 Radial Grids

The methods used to calculate, store and use the non-local form factorsquT
ℓ,ℓ′(R,R

′) (equation 113) and
Vα,α′(R,R′) (equation 108) have to be efficient in a wide variety of reactions, from light-ion reactions
such as3He(3H,4He)2H or 16O(20Ne,24Mg)12C to heavy-ion reactions, such as nickel on tin one-nucleon
transfers. In the former cases, the radial form factorsVα,α′(R,R′) will be non-zero over large regions of
theR−R′ space, so (following ref [56]) interpolation procedures should prove effective.

However, when small masses are transferred between two larger nuclei the form factor is nearly local,
and only large aroundR ∼ R′. If the whole (R,R′) array had to be calculated and stored in these
cases, modelling heavy-ion transfers would become inefficient, even with interpolation methods. The
form factor now varies rapidly as a function ofδR ≡ R − R′ (especially for heavy ion reactions, as the
Jacobianb3 in equation (114) becomes large), and varies only slowly withR (if δR is constant), as this
variation follows the radial dependence of the bound state wave functions. The best procedure is thus
[56] to first change to the coordinate pairδR andR, and then to use different interpolatory intervalshδ

andhR in the two directions respectively. Then, when nuclear masses become large compared with the
mass of the transferred particle,hδ can become smaller, perhaps even smaller thanh, the basic radial
step size.

The method adopted in FRESCO is to let the user specifyhδ andhR as multiples or submultiples ofh.
The value ofhR is very often always 3 to 5 times larger thanh, as this reflects the typical rate at which
bound state wave functions vary. If the bound state wave functions have many internal nodes, then the
interpolation intervalhR cannot be so large (this is often the case withα-particle bound states).

Thehδ, on the other hand, will be larger thanh for light-ion reactions (as described in [47]), but will be
comparable with or smaller thanh for few-nucleon transfers between heavy ions. The user alsospecifies
the maximum and minimum values of the range ofδR, which again will be large (∼ nuclear radii) for
light ions, and small (∼ 1 or 2 fm.) for heavy ion reactions. The accuracy of these choices is checked
retrospectively by collecting statistics on the distributions of the functionsqT

ℓ,ℓ′(R, δR), averaging over
R. and all partial wavesT , ℓ, andℓ′.

Whenhδ or hR aremultiplesh, then (say) cubic splines in two dimensions can be used to expand the
form factors for the integrals of equation (106). If, however, hδ is asubmultipleh, as is the case in many
heavy-ion reactions, then a more efficient procedure is possible.

Suppose, say, we wish to evaluate the numerical integral

I =
∑

j

V (xj)f(xj), (135)

where thef(xj) are the interpolated values of the functionf(x) between its stored valuesfi at x =
(i− 1)h. Let the interpolation method be linear:

f(x) =
∑

m

am(x)fm (136)

for somex-dependent coefficientsam(x) from (say) fitting cubic splines over some range (most of the
am will be zero except form ∼ i± 2). ThenI can be evaluated directly in terms of thefm :

I =
∑

j

V (xj)
∑

m

am(xj)fm (137)
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=
∑

m

V mfm (138)

where

V m ≡
∑

j

V (xj)am(xj) (139)

is a new effective form factor This means that whenhδ is a submultiple ofh, we do not need to store a
form factor at intervals ofhδ, only at intervals ofh, if we use the ‘preemptive interpolation’ of equation
(139). This has the further advantage that as the no-recoil limit is approached (as the mass of the trans-
ferred particle becomes a smaller fraction of the interacting nuclei), then the form factorsqT

ℓ,ℓ′(R, δR)

andV α,α′(R, δR) need fewer grid points in theδR direction. Less arithmetic is needed to evaluate the
source functions of equation (106), which change from

Sα(R) =

∫ δRmax

δRmin

V α,α′(R, δR) fα′(R− δR)d(δR). (140)

to

Sα(ihR) = h
∑

j

V α,α′(ihR, jh)fα′((inR − j)h) wherenR ≡ hR/h (141)

even when the original kernel functions vary rapidly asδR changes in steps ofh (with R constant).

Simultaneous Two-Nucleon Transfers: A similar ‘preemptive’ summation is possible when calculating
the form factors for the simultaneous transfer of two nucleons between states of the form of equation (50)
in the projectile and in the target. As mentioned in section 3.4, two-nucleon transfer can be viewed as
the transfer of a ‘structured particle’ with internal coordinates(ℓ, (s1s2)S)j andρ, the distance between
the two nucleons. A transfer is only possible if the initial and final states have identical values for
these ‘internal coordinates’. The angular momentum quantum numbers can be matched exactly, but
source terms can either be constructed for eachρ value and summed in equation (106), or the separate
ρ products can be summed as early as equation (113). Because the separateρ values are only used in a
summation, it is most economical to use Gaussian quadrature, as for a given accuracy this reduces by a
half the number ofrhoi values at which the wave functions of equation (50) need to becalculated and
stored. If therhoi are chosen to be the Gaussian quadrature points over some chosen range, and ifwi

are the corresponding weights, the equation (113) becomes

qT
L,L′(R,R′) =

1

2

∫ +1

−1
r−L−1r′

−L′−1
[
∑

i

wiVu12(r, ρi) u
′
12(r

′, ρi)]PT (u)du. (142)

Equation (114) remains unchanged, and this means that two nucleon transfers can be calculated effi-
ciently with little more computational work than that required for single-particle transfers.
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A Notation and Phase Conventions

Spherical Harmonics

The phase convention used here is

Y m
L (θ, φ) =

√

2L+ 1

4π

(L−m)!

(L+m)!
(−1)meimφPm

L (cos θ)

for m ≥ 0, andY −m
L = (−1)mY m∗

L to give negativem values.

Angular Momentum Coupling Coefficients

The notation〈ℓ1m1ℓ2m2|LM〉 has been used for the Clebsch-Gordon coupling coefficient for coupling
statesℓ1m1 andℓ2m2 together to formLM. The

(

a b c
α β γ

)

≡ (−1)a−b−γ

ĉ
〈aαbβ|c− γ〉

represents the Wigner 3-j symbol, and

x̂ ≡
√

2x+ 1.

The 9-j coupling coefficient is used in two forms related by










a b c
d e f
g h i











≡ ĉf̂ ĝĥ







a b c
d e f
g h i






.

The binomial coefficient is
(

x
y

)

=
x!

y!(x− y)! .
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B Coupled Channels Codes in Nuclear Physics

There is a natural progression of complexity in the codes being considered here:

1. One-step (DWBA) codes Inelastic excitations Zero-rangetransfers (ZR) No-recoil transfers (NR)

2. Coupled channels (CC) codes with local form factors Inelastic excitations (CC) Zero-range trans-
fers (ZR-CC, sometimes included in CCBA) No-recoil transfers (NR-CC, sometimes included in
CCBA)

3. One-step (DWBA) codes for exact finite-range transfers (EFR-DWBA)

4. Coupled channels Born approximation (CCBA): a coupled set of channels followed by a finite-
range transfer (sometimes called EFR-CCBA).

5. Two-step DWBA Zero-range transfers (2-step ZR-DWBA) No-recoil transfers (2-step NR-DWBA)

6. One-step DWBA codes for exact finite-range transfers (EFR-DWBA)

7. Two-step DWBA for exact finite-range transfers (2-step EFR-DWBA)

8. Coupled reaction channels (CRC), allowing finite-range transfers.

The following is a summary of the more widely known coupled channels codes (codes which can only
perform one-step DWBA calculations have been excluded).

1. Yoshida [57]: Inelastic CC withδ-function interactions

2. Buck, Stamp and Hodgson [53] and Satchler (see ref.[53]):Inelastic CC

3. Tamura [1]: General purpose inelastic CC

4. Stamp [58]: ZR-CC

5. Rawitscher [59]: ZR-CC using iterated Green functions

6. Tamura and Low [56] and [47]: Saturn-Mars - NR-DWBA and EFR-DWBA

7. Ohmura et al. [46]: CRC for deuterons

8. Ascuitto et al. [61]: ZR-CCBA using source terms

9. Mackintosh [62]: ZR-CRC for deuterons and protons

10. Bang and Wollesen [60]: two-step ZR-DWBA.

11. Toyama [64]: two-step ZR-DWBA

12. Schaeffer and Bertsch [63]: two-step ZR-DWBA

13. Rösel et al. [35], extended by Rawitscher [36]: AROSA - CC for Coulomb excitations

14. Cotanch and Vincent [41]: CRC for deuterons

15. Raynal [51] and [38]: General purpose inelastic CC and ZR-CC

16. Kunz [65], and later Comfort [66]: CHUCK - General purpose CC (inelastic and ZR)

17. Nagel and Koshel [43]: OUKID - EFR-CCBA for light ions

18. Kawai [50]: CRC for deuterons

19. Baltz [67]: QUICC - Inelastic CC for heavy ions

40



20. Imanishi [68]: CRC for12C+13C reactions

21. Tolsma [5] and [37]: PIECANSOL - Inelastic CC for heavy ions

22. Toyama and Igarashi [69]: TWOSTP - 2-step ZR- and EFR-DWBA for light ions, and
Igarashi: TWOFNR/PTFF - 2-step EFR-DWBA for sequential andsimultaneous transfers of two
nucleons for light ion reactions.

23. Thompson [49]: CRC for deuterons

24. MacFarlane, Pieper and Rhoades-Brown [52]
PTOLEMY/1 - Inelastic DWBA and EFR-DWBA for heavy and light ions
PTOLEMY/2 - General purpose inelastic CC for heavy ions

25. Kunz : CHORK - ZR-CC, and NR-CC for heavy ions

26. Thompson [34]: FRESCO - General purpose CRC for light andheavy ions

27. Clarke [70]: a new ‘zero-angle’ approximation for CC finite-range transfers (i.e. ‘ZA-CC’)

Note that it is sometimes difficult to put these developmentsin a definite chronological order.
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