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Abstract

This paper describes the components and methods of a coemsied code for coupled reaction
channels calculations in nuclear physics. Procedureseserided which are common to the mod-
elling of reactions induced by light and medium-mass iongl, \&hich are sufficient to calculate the
effects of successive processes to any order.

1 Introduction

When two nuclei approach each other they may interact inraeways. In the first approximation they
may be regarded as clusters of nucleons, and their primeasairtion results from the inter-nucleon two-
body force, which has an average effect found by folding tieef over the internal configurations of the
two clusters. However, these configurations are not statit,one or more rearrangement processes may
occur during the time in which nuclei are together during éision. As well as elastic scattering, with
the projectile and the target remaining in their groundestavarious kinds of non-elastic interactions
may have time to operate.

Inelastic excitations may occur, for example when one dn bbthe nuclei are deformed or deformable,
with the result that higher-energy states of the nuclei megpe populated. Single-particle excitations
are another kind of inelastic process, when a particle inafriee nuclei is excited during the reaction

from its initial bound state to another state which may benoloor unbound. Nucleons may also transfer
from nucleus to the other, either singly, or as the simubasetransfer of two nucleons as a particle
cluster.

In this paper | will consider some mathematical models sefficto describe these processes, and the
principal interest will be in calculating the effects of theccurring successively as multi-step pro-



cesses. One-step processes have been traditional ddseitbhethe Distorted Wave Born Approxima-
tion (DWBA), and although second-order DWBA expressions ba written down and computed, |
shall be mainly concerned wittoupled-channelformalisms, in order to predict the effects of multi-step
processes to any or all orders.

The present work is in the framework of Direct Reaction tlyeahich attempts to solve the Schrodinger
equation for a specific model of the components thought tarioitant in the reaction, and of their
interaction potentials. In direct reaction theories, thages describing the coherence of all components
of the wave function are coherently maintained, and themiaile typically include imaginary compo-
nents to model how flux is lost from the channels of the modelther channels. By contrast, a theory
of compound-nucleus processes would make approximati®mns the statistical distribution of the in-
elastic excitations. Direct reaction theory would desetitese effects with an imaginary potential, with
the argument that because the compound nucleus channédtecaherent with respect to each other,
their effects back on the direct-reaction channels areiatsmherent, and may hence be represented as a
statistical loss of flux that occurs when the nuclei overlagheother to any significant extent.

Comprehensive accounts of the physical assumptions, uetinad results of direct reaction theory is
given in the papers by Tamura et al. [2], and in the books byté&nd3] and Satchler [33]. The aim of
the present paper is to show how a large subset of the diractioa mechanisms can be modelled in
a general purpose computer program. For definiteness, | bowifiog the methods used in the recent
code FRESCO, while also mentioning, where appropriatdtiaddl features that could well be included
within its framework. Brief descriptions will also be givehalternative methods, and the relative merits
of the different procedures will be discussed.

The code of ref.[34] has not been developed to include angiateeatment of the long-range Coulomb
mechanisms that are significant when heavy ions are incatestrongly-deformed nuclei. For methods
of dealing with these processes efficiently, the readerfésned to refs. [35], [36], [4], and [5], [37].

The organisation of this paper is as follows. Section 2 wilega derivation of the coupled reaction
channels (CRC) equations within the framework of the Fedhldarmalism for direct reactions, and
show how one-step and two-step DWBA (etc.) are special gadbe CRC equations. In both the CRC
and DWBA formalisms, particular attention is paid to theatreent of the so-called ‘non-orthogonality
terms’ which arise with couplings between different magssifians.

The wave functions needed to specify scattering states adldar eigenstates are given in section 3.
Single-nucleon wave functions are defined for both bound wmzbund energies, and a method for
solving the coupled-channels bound state eigen-problgareisented. Two-nucleon wave functions are
described in both the centre-of-mass and independeritaaglidinates. Finally, the formulae are given
for calculating the observable cross sections and potansain terms of the S-matrix elements of the
scattering wave functions.

Section 4 specifies some of the different kinds of potentiadg exist between nuclei, or can couple
together the excited states of a single nucleus because wftéraction with its reaction partner. Details
of the rotational model, single-particle excitations aadtigle transfers are given.

The methods used to solve the CRC equations are describedtiars5, along with the procedures for
calculating the transfer form factors in terms of a two-dasienal kernel function. Appendix A defines
some of the notation and phase conventions used, while AlppBrsummarises the more widely-known
coupled-channels codes which have been written to solders in nuclear physics.



2 Coupled Reaction Channels Formalism

The coupled reaction channels (CRC) model of direct reastiio nuclear physics proceeds by construct-
ing a model of the system wave function, and solving Scm@el's equation as accurately as possible
within that model space. The model used here projects thepletenwave function? onto a prod-
uct ¢; = ¢4y * ¢ Of projectile and target states with a wave functioiiR;) describing their relative
motion:

N
PU =V = Z@M(&') 1)

The basis stateg;, and ¢;; can be bound states of their respective nuclei, or they maglidurete
representations of continuum levels. In the former case ave la ‘bound state approximation’, and in
the second case we have a ‘coupled discrete continuum deafgss 40] (CDCC) approximation. The
statesp; can be in different mass partitions, or they can be diffeeswited states of the projectile and/or
the target in any one of the partitions. What is essentidieddRC framework is that there be a finite set
(IV say) of square-integrable basis states, as this leads tdead@t of equations coupling the channel
wave functions);(R;) as unknowns.

For a complete Hamitonia®{ and total energy, Schrodinger's equatioft{ — E]¥ = 0 becomes
[H — E]¥ = 0 in the model space with [6]

H = PHP — PHQ QHP, 2

QHQ — E —ie
where) = 1 — P ande is a positive infinitesimal quantity whose presence enstlivaisthe excluded
channels have a time-retarded propagator, and henceamtyeflux from the model space. The second
term as a whole describes the effects of the excluded chammethe model subspade¥. These
effects could be, for example, from compound nucleus famatvhich we have excluded from explicit
consideration within direct reaction theory. In the abseatdetailled knowledge of these effects, we
construct our model Hamiltoniak using effective potentials which we believe approximatesgme
average manner) the processes described by equation (@)effHetive potentials will often be optical
potentials with real and imaginary components fitted to seimpler kinds of reactions, and the effects
of compound nucleus formation on these potentials is toritiré to their imaginary component.

The model Hamiltoniart for the CRC system can now be projected onto the individusiststates; .
If E; is the asymptotic kinetic energy in thigh channel, then the channel-projected Hamiltonidn
satisfies

H; — E; = (¢i|H — El|¢i) )

and will be composed of a kinetic energy term and a diagornaapotential. The ‘interaction potential’
V; is then defined to be everything s not included inH;, so

Hi—E;+Vi=H—-E. (4)

This construction give¥; which have vanishing diagonal matrix elemefts|V;|¢;) = 0.



2.1 Coupled Equation Set for/NV bound state pairs

If we take the model Schrddinger’s equatipii — E]¥ = 0, and project separately onto the different
basis states;, we derive the set of equations

(B — Hi) i(Ri) = Y (¢i|H — E|o;) 1 (Ry). (5)
J#i

which couple together the unknown wave functiognéR,;). The matrix element;|H — E|¢y) has two
different forms, depending on whether we expand

H—-—E = H;— FE;+V,(the ‘post’ form)
= H; — E; + V; (the ‘prior’ form).

Thus

(6ilH — E|g;) = VE™' + [H; — Ej]Kij(post) (6)
or = VP4 K[H; — Ej(prior)

where
VIS = (@ulViley), VE™T = (@ilViles), Ki = (il6y). ")

The overlap functionk;; = (¢;|¢;) in equation (6) arises from the well-known non-orthogadwyatie-
tween the basis stateg and¢; if these are in different mass partitions. We will see belbat this term
disappears in first-order DWBA, and can be made to disappesgdond-order DWBA, if the first and
second steps use the prior and post interactions resgdgctive

2.2 N-step DWBA

If the coupling interaction$/; in equation (6) are weak, or if the back coupling effects efsthinterac-
tions are already included in the optical potentials of thiergchannel, then it becomes reasonable to use
a distorted wave Born approximation (DWBA). This approxiima always feeds flux ‘forwards’ in the
sequencd — 2 — --- — NN + 1 neglecting the back couplings. In the elastic channel thevianction

is governed by the optical potential defined there, and theeviianction in thei'th channel is governed
by the equation

—1
> (¢ilH — Elpj) 1 (Ry) (8)
=1

J

J
[E; — Hi| i (R;) =

Initial channel:
[Ey — Hi] 1 (R1) =0
Second channel:

[Eo — Ha] ¢2(R2) = (¢2|H — E|é1) 11 (Ra) (9)



If the prior interaction is used, the right hand side becomes

($2|V1]01)¥1 + (@2|01) [H1 — E1]in

= (¢2|Vi|¢1 )11 asyy is on-shell. (10)
= Vi (11)
Final channel: (c= N +1)
[Ee — He| e(Re) Z (¢c|H — E|d) ¢;(R) (12)
7j=1
If the postinteraction had been used for all the couplings to this laahael, then
j=c— j=c—1
[Ee — H] ¢e(Re) Z (belVeldsyvo + [He — Ec] Y (delog)¥; (13)
: j:l
SO
j=c—1
[E. — H.] x Z VROt (14)
where
j=c—1
XC(RC) = 'L/}c"i‘ Z <¢C’¢j>¢]
j=1
- <¢c‘\p>

Note that, as all the; are square-integrable and hence decay fasterthamt large radii, the). and
X are the same asymptotically. They differ only by an ‘offdsli@nsformation’, and hence yield the
same (on-shell) scattering amplitudes. The equatioty fdras no non-orthogonality terms once past
interaction is used in the final channel: this is what is mbgrgaying that the final channel is ‘effectively
on-shell’.

These results imply that ifV-step DWBA, some non-orthogonality terms can be made tqpesar if
‘prior’ interactions are used for the first step, and/or ibsp interactions are used for the final step.
This means that the non-orthogonality term never appeattseifirst-order DWBA, irrespective of the
choice of prior or post forms. In second-order DWBA, the ppost combination must be chosen [7] to
avoid the non-orthogonality terms. It should be also cleat hon-orthogonality terms will have to be
evaluated if the DWBA is continued beyond second order.

2.3 Full CRC solution by iteration

There are a number of different ways of solving the CRC equativith the non-orthogonality terms
present: for discussions of different approaches see[gif§41] and the survey of ref.[ch. 3][33].

There are schemes available which can iterate all chanritlisanw arbitrary choice of post or prior
interactions for all the couplings. Define

9;; = O0orl: presence of poston thie— i coupling, (15)
sol —#6;; = 1lor0: presence of prior (16)
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The following iterative scheme [42h€1,2,..) on convergence then solves the CRC equations (5):

For n =0, start with
W = 8(ii0)tetastic (17)
550 = 5@ =0 (18)
Forn=1— N + 1 (for N-step DWBA) solve
[H — B + 5" =0 (19)
with

SZ'(n—l) _ Z[Hij‘/i?OSt + (1 _ Hij)‘/il;rior] w](n—l) o 5SZ(n—1) (20)

J

then calculate for subsequent iterations

su = 3 0(gile Y (21)
J

550 = 31— 0)(ilen) S + [H) - Ejloyt™)] (22)
J

T (23)

This scheme avoids numerical differentations except inighdn-order correction téS; that arises in
some circumstances.

When the non-orthogonality terms are included properljaeitomes merely a matter of convenience
whether post or prior couplings are used, for one, two, antistep calculations. The equivalence of
the two coupling forms can be confirmed in practice (see, Xarmple, refs.[42], and [9]), and used as
one check on the accuracy of the numerical methods employed.

3 Wave Functions for Scattering and Bound States

In order to describe details of the nuclear transitionsisgedlly, it is necessary to specify in sufficient
detail the initial and final states of the nuclei involved. Start with, the excitation energies, spins
and parities of all the states in each mass partition neeé gpbcified, along with the nuclear masses,
charges and relative-values of the partitions. Eagbair projectile and target excited states is then a
distinct channel with its own scattering wave function amditdary conditions. The initial projectile
and target states will select one such channel as the ‘im@petiannel’, with its boundary conditions
specifying an incoming plane wave. All channels (includthg incoming channel) will have outgoing
spherical waves. Particular attention must be given to tresistent placement af factors in these
definitions.

The individual nuclear states are then specified in suffidetail for the particular reaction mechanisms
involved. It is not necessary to specify the full quantum hzegcal states of all the nucleons in the
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nucleus, but rather, only the states of those changed inethetions being considered. In particular,
one and two-nucleon wave functions will have to be descrilifethiose nucleons are to be transferred
to other nuclei. If a nuclear state consists of a particlepaf s bound outside a nucleus with possible
core stateg;, then the bound state radial wave functiang;;(r) will have to be found by solving a
coupled-channels set of equations for negative energyeigkitions. If the particle inotbound, in the
other hand, then its continuum range of energies must beetised into a finite collection of ‘bin’ states
which can be scaled to unit normalisation. If the nucleaeestansists of two particles of intrinsic spins
s1 ands, outside a core, then it is usually specified by a shell-modélya Sturmian-basis calculation
in terms of the independent coordinaigsandr,. To calculate transfer rates, however, the two-particle
wave functions need to be given in terms of the collectiverdioates (usually = %(rl + r9) and

p = r1 —r3). In order to use the states in a reaction calculation, fbergequations are given for the
transformation from the independent coordinates.

When we have calculated the scattering wave functions,least their asymptotic parts in terms of their
S-matrix elements, we can find the cross sections for eacltomggpair of projectile and target states in
each partition. Furthermore, if the initial projectile hasn-zero spin/,,, then the effect on these cross
sections of polarisation of the projectile is specified yt#nsor analysing powef$, (for 1 < k < 2J,
and0 < ¢ < k). Integrated cross sections and fusion polarisations Isanb& found using th&-matrix
elements.

3.1 Total wave function

In each partitiors of the system into a projectile of maslk,, and a target of masd,;, the coupling
order is

L+J,=J; J4+J:=J7p, (24)
which may be defined by writing
WM = | (L Jy)J, Ji; Jr) (25)

where J,, = projectile spin,J; = target spin,L = orbital partial wave, and; = total system angular
momentum.

The set{xpt, (L Jp)J, Ji; Jr} will be abbreviated by the single variable Thus, in each partition,

UM (R, &, &) = > $7,(&) b, (&) LY M (Ry) - f(IZ:Z)J,Jt (Rx)
LJyJJ;
M pip M g piy
(LM Jypup| TM ) (T My Jypie| Jr M) (26)

hereR,, = radial coordinatdrom the targetto the projectile in partitions, &, = internal coordinates of
projectile,&; = internal coordinates of target, and

Fah s (R) = fal(R) (27)

are the radial wave functions. T factors arise from the spherical Bessel expansion of theniireg
plane wave. Some formalisms include extra powers of the equation (26), in order to make the
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coupling interactiond/,. real. Inelastic coupling interactions can be made real i(fteger-valued
spins, at least), by including a factof*7¢ in the definition of¥, and transfer couplings can be made
real by including a factoi’ for orbital angular momenturd of the bound particle state in this partition.
In a general purpose code [34], however, there may be cldstegen these different conventions. The
ground state ofLi, for example, would have a factor ¢#/2 on the rotational model convention, but a
factor ofi! if the state were regarded ag a= 1 bound state of a core and a triton cluster. It seems
simplest, therefore, to omit these addition phase factongpbetely. The coupling interactions can very
often be made real, nevertheless, if thefactors are included explicitly in the CRC equations, ash t
next section.

The wave function¥ could also have been defined using the ‘channel spin’ reptatsen (as in [43])

= |L, (JpJ+)S; Jr), which is symmetric upon projectile- target interchange except for a phase factor
(—1)5=7»=Jt, This would simplify the subsequent description of the dimgpelements in section 4, as
the formulae for projectile mechanisms and target mechanisould differ only by this phase factor.
However, the channel spin representation has the disaaty@athat the projectile spin-orbit force is not
diagonal in this basis. This would not matter if coupledrutels solutions were always sought, but one
of the advantages of sometimes solving the CRC equatiargiitely is that the DWBA solutions of first
and second order (etc.) may be obtained. In order for théapigviterated CRC solutions to reproduce
the results of DWBA codes, it is necessary to treat spintddoces without approximation, and since
spin-orbit forces almost always are those of the projedtile asymmetric representation of channel (24)
is advisable.

Identical Nuclei If one partition ¢ say) is identical to another except that the projectile and target
nuclei are exchanged, then the total wave function shoufdioeed from(1 + 7 P,,/) times the above
expression, where = =1 is the intrinsic parity of the two nuclei under exchange. Agie method
of dealing with this exchange is to first form the wave funetaf equation (26), and then operate with
(1 + wP,,) on both the wave functions and the S-matrix elements, befags sections are calculated.
This is equivalent to the replacement

fa(R) — foz(R) + Coz,o/fo/(R) (28)
where
ot = (V) E0p o (—1) T J W (I, L T dy; T (29)

with of = |(L'J,).J", J,: Jr).

3.2 Coupled equations

The CRC equations are in many cases of the form

[Enpt—THL(RH)_UH(RH)] fO{(RIi) = Z ZL LVF ’)fo/(RH’)
o/, I'>0
" [ Voo (B), B R )R (30
o/ n’;éfi



where the kinetic energy term is

n? [ d? L(L+1)>, 31)

T, - _
L(R) 2t <dR2 R2

U, (Ry) is the diagonal optical potential with nuclear and Coulomimponents, an&,,, is a radius limit
larger than the ranges b, (R, ) and of the coupling terms. The equations (30) are in theitt c@smon
form: they become more complicated when non-orthogogalitire included by the method of section
2.3. Thevia,(RH/) are the local coupling interactions of multipolarity and theV,... (R, R.+) are the
non-local couplings between mass partitions that arise frarticle transfers.

For incoming channek, the f,(R,) satisfy the boundary conditions

7

fa(Ry) =R.>Rm 9 [504@0}[2:71 (Ka(Rk)) — SaoozH(L—;i (Ka(RH))} (32)

whereHén) andHE;) are the Coulomb functions [44] with incoming and outgoingihdeary conditions
respectively. The asymptotic kinetic energies are

E/ipt =LF+ Qn —€p — €& (33)

for excited state energies, ¢; and Q-value?),; in partition ~, and

2
Ko=\|| 325 (34)
W Ep

wherey,, = Agp Akt /(Agp + Ase) is the reduced mass in the channel with partitiomand

_ 24k Z,ipnge2

e =37 oK. (35)

is the Sommerfeld parameter for the Coulomb wave functions.

3.3 Single-nucleon states

If ¢s2s(€) is a core+particle bound state, then for coupling otdér)j, I; JM) , the wave function is
dim(Ee,r) = Z A%]J (b1 (66)9058]' (r)]JM (36)
27

; 1
= D0 A GmIplIM) fr(Ee) (mesmaljm) Y, ()91 ~ugsr(r)

051 mumsmy

whereé, = core internal coordinatesy;,,,,({.) = core internal statepy’s = particle internal spin state,
ugsj1(r) = particle core radial wave function, amﬁjﬁ] is the coefficient of fractional parentage.



3.3.1 Bound States

If the single-particle is bound at negative enefgwaround the core, then its wave function may be found
as the eigen-solution of a given potential:

[To(r) + V(r) + er = Elugsir(r) + Y Vigjrarsjrr (Nuesyr (r) =0 (37)
241, T>0

with boundary conditionsi;;(0) = 0 and, asr > R,,, of ugj1(r) oc Wy(krr) whereWy(p) is the
Whittaker function and? = 2u|E — €7|/h? is the asymptotic wave number.

If the core cannot be excited, then these coupled equatiahge to one uncoupled equation, but solving
this equation can still be regarded as a special case of ti@arbbound state problem. Eigen-solutions
can be found by solving either for the bound state endrgyr by varying the depth of the binding
potential. In general, however, we can choose to vary anyipolé of any part of the binding potentials
(except the Coulomb component), so one method of solvingutheoupled bound-state problem will
be outlined below.

To define the phaset(l) of the overall wave function, some convention has to be ttbpOne com-
ponent (say that around a cafe= 0 state) can be set to either positive towards the origin+{( 0), or
positive towards large distances { oo). The former choice is made in the FRESCO code, following
the Mayer-Jensen phase convention, which is also used fiordméc oscillator wave functions in many
structure calculations.

3.3.2 Solution of the Coupled-Channels Eigenvalue Problem

When, for example, the problem is to find the bound state ofrci@in a deformed potential, then
several channels with different angular momenta will bepbed together. There are various technigues
for calculating the wave functions of these bound states:afoeview see ref. [10]. The Sturmian
expansion method [45] can be used, or the coupled equataande solved iteratively. The Sturmian
method has the advantage tladit solutions in the deformed potential are found, where samegithe
iterative method has difficulty in converging to a particigalution if there are other permitted solutions
near in energy. The iterative method has the advantagehbaatlial wave functions (once found) are
subject only to the discretisation error for the Schroditgyequation, and are not dependent on the
(time-consuming) diagonalisation of large matrices, rofté the order of 100 or more. As they satisfy
the correct boundary conditions independently of the sfzelmasis-state set, the radial wave functions
of the iterative method therefore more accurately refleeidétails of the coupling potentials and of the
core excitation energies. As nuclear reactions are oftefirex to the surface region, it is important to
satisfy the exterior boundary conditions as accuratelyoasiple.

A method for solving the uncoupled eigenstate problem hdsetocluded in a reaction code in any
case, and since it can be generalised as described in thisnséz solving the coupled problem, it
seems a worthwhile facility to have available. Bound stétas a previous Sturmian solution can still
be included as explicit linear combinations of the singletipie (uncoupled) basis states used in the
Sturmian expansion.

The general problem of finding eigen-solutions of aldetoupled-channels equations can be represented
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as the problem of finding such that the equations

Az G+ 1)
- +z 1)+ AV ()] 5(0) = 0 @®)
with boundary conditions
T/JZ(R) = CLinmi(kﬁiR) (39)
Yi(R+6R) = a;Wyy, (ki(R+0R)) (40)
¥i(0) = 0 (41)

(with k2 = x? + 0\ andn; = nu;/(2k;)) for given partial waveg;, fixed potentialsU;;(r), variable
potentialsV;; (r), matching radiusg?, and Coulomb proportionality constants The energy constants
are the asymptotic components of the diagdnalr), andé is the asymptotic component of the diagonal
Vii(r) (assumed all equal).

The solution begins by constructing the trial integrationdtions for a trial value ok, on either side of
an intermediate matching point= p:

fi%(r) by integratingr from  to p,
starting with /% (k) = &; ; h"+!/(2¢; + 1)!!, and

Out( ) by mtegratlngr from R in to p,
starting with f;%(R) = d; j Wy, (ki(R + 6R)).

The intermediate point = p should be chosen where the wave functions are oscillamaydid having
to integrate outwards in the classically forbidden region.

The solution is therefore

> bifil(r) forr < p
vilr) = { S e [ () for p > . (42)

and the matching conditions are the equality of the two esgdods and their derivatives at= p. The
normalisation is still arbitrary, so we may fix = 1. In general the equations (38) have no solution as
A is not exactly an eigenvalue. The method therefore usesisceegancy in the matching conditions
to estimate how\ should be changed tb+ d\ to reduce that discrepancy, and iterates this process to
reduces\.

Thus at each iteration we first solve as simultaneous eaqusatie 2//-1 of the matching conditions

Zb- n(p ch out () for all 4 (43)
Zb i Zc] out () for all i # 1 (44)

along withe; = 1 for the 2 unknownsb;, ¢;. If the function;(r) is then constructed using equation
(42), there will be a discrepancy as

¢m_¢1 )’r<p 7é wé)ut 'L/}l )’r>p7 (45)
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and this difference will generatg\ via

M LR
D /0 Di(r) Vi (r) (r)dr = 1(p) [out. — Yil- (46)
ij

It is necessary while iterating in this manner to monitor tluenber of nodes in one or more selected
components of the wave function, as in general a given patesill have different eigensolutions with
different numbers of radial nodes. When the iterations ltaveerged to some accuracy criterion on the
size ofd )\, the set of wave functions can be normalised in the usual arann

M o
> [Tl =1 @7

and perhaps some of the componentsnitted if their contribution to this norm is below some m@es
threshold.

3.3.3 Continuum States

If the initial and/or final single-particle states of a triarsstep are unbounl’ — ¢ > 0, the use of single
energy eigenstates;, () will result in calculations of the transfer form factors whiwill not converge,
as the continuum wave functions do not decay to zero-asoo sufficiently fast as to have square norms.
One way [39], [40] of dealing with this divergence is to takmtinuum states not at a single energy, but
averaged over a range of energies. These ‘bin’ states thalt age square integrable, and if defined as

k2
) = V= [ emea (49)
ko

with N — /k (k)| dk (49)

for some weight functionu(k), then they are normalise@®|®) = 1 provided a sufficiently large maxi-
mum radius for is taken, and that thg;, are eigensolutions of a potential which is energy-indepahd
They are orthogonal to any bound states, and are orthogoo#thér bin states if their energy ranges do
not overlap. The construction can be easily generaliseid/éoogupled-channels bin wave functions.

The weight functionu(k) is best chosen ([40] p. 148) to include some of the effectsvkrto be caused
by the variation ofp,(r) within the bin rangek; < k < ko. If w(k) = exp(—idy), wheredeltay is the
scattering phase shift faf (r), then it includes the effects of the overall phase variatiohy, at least
in the DWBA limit. If, however,w(k) = exp(—idy)sind, = T}, whereT}, is theT-matrix element
for ¢x(r), then it includes in addition a scale factor which is useffithe |7} | varies significantly, as it
does, for example, over resonances. Both choices resultealavalued wave functio®(r) (for real
potentials), which is computationally advantageous.

If the maximum radius R,,, say) is not sufficiently large, then the wave functiaghsill not be nor-
malised to unity by the factors given in equation (48). The madius of a bin wave function increases
as the bin widtht, — k; decreases, approximately B4 k2 — k). These bin constructions can be used
to describe the narrow resonant wave functions of saythstate inSLi, or the 7/27 state in“Li, but
these states will require a large limiting radifts, unless thew(k) = T} weighting factor is used to
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R, | 0FE =0.1 MeV 0F = 0.5 MeV

(fm) e~k Ty ek Ty

10 0.105 0.923 0.108 0.977
20 0.109 0.939 0.132 0.985
40 0.112 0.951 0.258 0.993
80 0.122 0.971 0.411 0.996
160 0.142 0.986 0.614 0.998

Figure 1: Normalisations of a continuum bin state. For fisstate in®Li at 0.71 MeV, Saxon-Woods
potentials were used withi = 77.05 MeV,R = R, = 1.2 * 41/3 fm., anda = 0.65 fm.

emphasise the increase in the interior wave function owerdsonance. THe™ state inLi at 0.71 MeV,

for example, for which the resonance width is approximadé€lkeV, yields the normalisations shown in
3.3.3. It can be seen that without a scale factor which enigggshe resonance peak, very large radii
R,,, will be needed to obtain unit normalisation.

3.4 Two-particle bound states
3.4.1 Centre-of-mass coordinates

If o5r(&,r, p) is a two-particle bound state with total spinand isospinZ’, then for coupling order
{ L, (s152)S)5} 12, I; J) we have

ag ag 53 s 1
o= 3 AL on(§)-05) 03 Y (F) YE(P) uia(rp)
LeS
JJ12l
<J12M12LM[|JM><LAjm12|J12M12><€M52|jm12><810'18202|52> (50)

whereAilﬁ,I1 “; is the coefficients of fractional parentage, asfd 432 are the intrinsic spins of the two
particles.

Note that two neutron transfer can be viewed as the tran$fetstructured particle(?, (s1s2)S)j, and
then becomes similar to single-particle transfers of above

The radial wave functiom2(r, p) can be given either as a cluster product of single-particteesunc-
tionsuia(r, p) = Pr(r)de(p), or input directly as a two-dimensional distribution e.gorfr a Faddeev
bound-sate calculation, or calculated from the correlated of products of single-particle states, as in
the next section.

3.4.2 Independent Coordinates

Two-particle states from shell-model calculations or frStarmian-basis calculations [11], and are then
usually described by means of thg, ry) coordinates, and then transformed internally into thereent
of-mass coordinatds, p) of equation (50) using; = z;r + y;p. For equal mass particles; = x5 = 1,
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andy; = —y = % The second description is as

p12(r1,T2) ZCZ |(1(3), 51)71(4), (€2(3), 52)52(); J12T) (51)
=3¢ > IL, (¢, (5152)8)j; J12T) ¢f;§l(r p) (52)
U LLSy

The transformation of théth component in the cluster basis is

S10s(rp) = (L, (L (5152)8)j; Ji2T| (¢1(0), 51)1 (), (¢a (i), 52)ja (8); JrT) (53)
X <[YL(f)n(ﬁ)]A ‘ [“Pflsljl (rl)@fzssz (rQ)]J12T> (54)

where (suppressing thiendices for clarity)

(L, (£, (5152)9); J12T| (41, s1) 1, (b2, 52) 425 J12T) =

o by by A 14 (_1)£+S+T .
> ASjija| s1os2 S JAW (LTS, M) (—1) =2 (55)
A 71 Je Jio \/2(1 + 551,525j17j2)

The radial overlap integral can be derived by means of haicrustillator expansions [12], with the
Bayman-Kallio expansion [13] or using the Moshinsky sdiakmonic expansion[71]. This last method
gives

Koy (rop) = (YL (E)Ye()], | e (r1) 0, (r2)])

1 1
200 +1\? [ 2y +1 7 i L
= 2 < o, ) ( 215 ) (21r) 27 (yap)™ (w2r)"™ (y2p) 2"

nin2

X Z ng (r,p) (2Q + 1) €120y — nyly — ny LE
Q

XZ fl—nl ny  Aq by —no n1 Ao A L Q Ay £ Q
0 0 0 0 0 0O 0 O 0O 0 O

e
fl — N no A1
x(—1)tltbtA2 (9N 4 1)(2A5 + 1)W (A1 LAl Q) ni ly—ny Ay |(56)
2 lo A
where( Cb" ) is the binomial coefficient (see Appendix A).

The kernel functiongs, ., Q(r, p) which appears in this expression is the Legendre expanditheo
product of the two radial wavefunctions in termswgfthe cosine of the angle betweeand p:

1 [ g, () g, (rg) 211
0 lrp) =5 [ 2 R Ry g (57)
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3.5 Scattering Amplitudes

The Rutherford amplitude for pure Coulomb scattering (withe?:o° factor) is

n exp(—2inln(sinf/2))
2k sin? /2

Fe(0) = (58)

The Legendre coefficients for the scattering to the prd'gastﬁatejl’) and target statg/; from initial
projectile state/,, and target statd; are given by

AL s =Y. (LOJym|Jm)(JmJ, M| Jr Mr)
L,J,.J' Jr
<L/ML/ Jll,m/\J'ML/ + ml><JIML/ + m'J{M/]JTMﬂ

Am K B i(or—00) i), ~ab)

k\ wk
; 2L + 1

<1> [5a o — ST } Ly my) (59)
2 ’ o 47

whereY,(L, M) is the coefficient ofP[™|(cos 0)e™™¢ in YM (6, ¢), o, = argT(1 + L + in) is the
Coulomb phase shifty’ refers to the primed valugs'J,, J;k'ii’ etc., andx refers to the unprimed values
LJyJikyp.

For each outgoing channg], J;, we may then calculate the angular-dependent scatteripjtades

S (0) = 05, 005, g1 Fe(0) + Z A%/M';mMP?/+M/_m_M(COS 0) (60)
L/

in terms of which the differential cross section is

do(0) 1 )
0 " @, DA TD 2 Hmarmu @ (61)

The near-side and far-side decompositions [14] of thissceestion are defined by the same process,
with PM (u) replaced bys [PM (u) + 2i/7Q} (u)] respectively. The Coulomb scattering of equation
(58) is included in the near-side component [15].

The spherical tensor analysing pow@ig, describe how th@utgoingcross section depends on tine
comingpolarisation state of therojectile. If the spherical tensot;,, is an operator with matrix elements

(Thq)mmr = V2k + I(mekq\me">,

we have
Tr(fr,fT)
Tiy(0) = Wﬂqﬂ (62)
— ]%Zm’M’m]\/f fm’M’;mM(Q)*<mekQ|me”>fm’M’:m”M(9) (63)

Zm’M’mM |fm’M’:mM(9)|2
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The polarisations in the ‘transversity frame’ [16] are then

Ty = Va2ity (64)
1

Ty = —§(T20 + \/ETQQ) (65)
1

Ty = —5(\/§¢T31 +V/5iT33). (66)

The S-matrix elements can also be used to directly calcthatetegrated cross sections

B do(0)
o= [ Lol 67)

to give

1K 47

TRk (20, +1)(2] + 1) ©9)

g

> @i+ ||’
Jr a o 7

The fusion cross section is defined as that amount of flux wikabes the coupled-channels set because
of the imaginary parts of the optical potentials. If the iming projectile is not spherical, then the
fusion rate will depend on its orientation, and hence on thgmetic substate quantum numiber One

can therefore define thfaision polarisationas the distributiomﬁgs, which can be calculated from the
S-matrix elements as

s
O{gs = ﬁ Z (2JT + 1)

Jr>m

1 .
X |1 — 57 =1 Z Z(meJ—m\LO>(JmJtMyJTM+m>ewLS&1’v
et e 1T

2
] (69)

wherew is the parity 1) of the coupled-channels set for each total angular momeniu

Partial Wave InterpolationHeavy ion reactions typically involve a range of partial wsi up to several
hundred or more, especially when Coulomb excitations dataithe highest partial waves. In such cases
it is often advantageous to solve the coupled channels 3@}sfdr, say, every:'th value of Jp, and
interpolate the intermediate values. Different values o&n be used in different reaction regionscan

be small (1 or 2) for the grazing partial waves, and up to 5 ofot@he Coulomb-dominated peripheral
processes, and can be adjusted for the required balancedrespeed and accuracy.

This interpolation may be performed on the S-matrix elemtrgmselves, or on the Legendre amplitudes
of equation (59) In this second method (that used in ref.)[34jbic spline interpolations are used. The
main factor limiting the accuracy of this process is thatrete of change with/; of the Coulomb phase
shiftsexp (o, +07%,) doesnotdiminish asJr increases. For that reason, it is advisable to interpolatte n
on theA™ of equation (59), but on 4% defined with aevisedphase shift factorxp i(o7, — o’;,). Since

L and L’ both tend to be neafr, it is only thedifferencethe phase shifts which limits the accuracy of
the interpolation. It will therefore be more accurate foradler projectile and target spins, and incoming
and outgoing channels with similar Sommerfeld parame{@gquation 35).

16



4 Coupling Interactions

When two nuclei interact, a variety of kinds of elastic anel@stic potentials may be needed to describe
their interaction. As well as the scalar nuclear attragtiand scalar Coulomb repulsions, if either of the
nuclei has spiry # 0, then there can be higher-order tensor interactions whodiple together the spin
and the orbital motion. If a nucleus has sgin> % then there can be a spin-orbit compongptR)21-J

in the Hamiltoniart. and if its spin is one or greatef (> 1), there can be tensor forces of various kinds.
The most commonly used tensor force i&,gpotential of the formV,.(R)R2(R, R).So(J, J). Similar
tensor forces are also generated if the projectile andttapies coupled together can reag- J; > 1:
such is the case with the tensor force between the protorhanuksutron within the deuteron.

Inelastic potentials (4.2) arise when one or both of the @idthve permanent deformations (as seen in
their intrinsic frame), or are vibrationally deformablehdlinelastic potentials which come from rotating
a permanently deformed nucleus are described in the Hamaitidoy terms of the form

V) = ZvA D Y{(R) (70)

where the form factor¥, (R) have both nuclear and Coulomb components for angular mammetnans-
fers A. Their nuclear component is approximately proportionatht® derivative of the scalar potential
between the two reaction partners. Simultaneous exaisiid both nuclei are also possible (see e.g.
[17]), but have not been included in the present code. Mimat excitations of a nucleus have more
complicated form factors in general [1], but can still be @xged in the form of equation (70). For the
more intricate level schemes of strongly-deformed nudlw®iill in general be necessary for each allowed
transition to have its own transition rate specified indejeetly of a particular rotational or vibrational
model.

Inelastic potentials also arise when one of the nuclei catebemposed into a ‘core’ + ‘valence particle’
structure 4.3), such that the opposing nucleus interadtsthe two components with distinct potentials
acting on distinct centres-of-mass. The valence part@felbe a single nucleon, as in the casé’@ =
160 + n, or it can be a cluster of nucleons, adlim=a + 2H, or "Li =a + 3H. In all these cases, there
arise inelastic potentials which can re-orient the grouatef the composite nucleus, or can excite the
valence particle into higher-energy eigenstates.

Finally, transfer interactions (4.4) arise when the regcbrings about the transfer of a valence particle
from one nucleus into a bound state around the other. As tt@rimg and outgoing projectiles have
different centres-of-mass, with the targets likewise dbeect treatment of transfer interactions requires
taking into account the effects of recoil and of the finiteges of the binding potentials. These result
in the coupling form factors becoming non-local, so thaytmst be specified by the two-dimensional
kernel functions/,..s (R, R.) in equation (30). They also require that the coupled equatie solved
by iteration, as will be discussed in section 5. If the eBeaftrecoil are neglected, the ‘no-recoil’ (NR)
approximation is obtained, but in general[72] this is inaete in ways which are difficult to predict.
For that reason the NR approximation is not included in tles@nt code. For many light-ion reactions,
however, another ‘zero-range’ approximation is availaatel this does remove many of the finite-range
requirements. Alternatively, a first-order correction thoe finite-range effects may be estimated, to give
the ‘local energy approximation’. These two special caseslscussed at the end of the section.
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4.1 Matrix Elements of Tensor Forces

This section presents the matrix elements for spin-orbitef® and a variety of tensor interactions. The
radial form factors/ (R) which multiply these matrix elements are not specified,esthese are usually
determined by a fitting procedure in an optical-model seaotte, and a wide variety of parameterised
forms have been used.

We shall use th§(LJ,).J1, Ji; Jr) representation for the order of coupling the spins, as imtoui (24).

4.1.1 Spin-orbit Interactions

For the projectile spin-orbit forck - J,

((LJy)Jy, Jo; Jr|L- 3,|(L J)J5, J; Jr)

= 5LL/5J1J1%[J1(J1 +1) = L(L+1) = Jp(Jp + 1)] (71)
This convention amounts toA - s spin-orbit force, rather than one basedlorwr. These are the same

for nucleons and spié nuclei, but it means, for example, that the spin-orbit gitks for deuterons and
“Li will have to be decreased as they have 1 and 3/2 respectively.

For the target spin-orbit interactida - J;, we first transform

(LJy)Jy, Jyy Jr)y = (=)= L=70|(J,L) 0, Jy; Ir)

= ()TN NI, (L) T Jr) 1 JsW (T, L Iy 1. J2) (72)
J2

SO

(L) Ju, Jos Jr L= J| (L' Jp) J1, Jis Jr)

= (=)L TN (2 + VW (T Ly Jys JyJo)W (T, LdrJy; Ji Ja)
J2

5LL’%[J2(J2 +1) = L(L+1) = Jy(Jy + 1)]

4.1.2 Second-rank Tensor Forces

We use the notations of ref. [18]:

1 3K?2-S(S+1)
= f K| < 7

and

A

WIRaIL) =35 (02010 74

18



for the reduced matrix elements of the second-rank spinadidlrtensors respectively. With the projec-
tile T, tensor forceRs - S2(J,J,), the coupling interactions are

<(LJp)le J; JT‘R2 : SQ(JpJp)’(L,Jp)J{v Jt; JT>
= 85,5 LIy (1) W (LL 7, 0y 201 ) (LR || LY, ||S2 | J,) (75)

For the targefT,. tensor forceR; - So(J;J;) the coupling interactions are

((Ldp) Ty, Jo Jr|Re - So(Je J) (L Tp) I, Jis Jr)

= (—1)J17J{+L/7L Z jlj{(2J2 + I)W(JPLJTJt; JlJQ)W(JpL/JTJt; J{JQ)
J2

X LJy(—=1) 27 E= W (LL' J; Jy; 2J2)(L||Ra || L) (J;||S2 || J;) (76)

For the combined target-projectilB, tensor forceR, - So(.J,J;) the coupling interactions are

<(LJp)J1, Jt; Jr|Ra - S2(Jth)|(L/Jp)J{, Jt; JT>

= N LJ{SS'W(LJ,Jpdy; JIS)W (L' T, Jr Jy; J1S')
SS’

A A

x LS (—1)"rE=S'W(LL'SS"; 2J1 ) (LI Ra|| L) {(JpJt) S[IS2 ]| (JpJ1)S") (77)
where the second-rank reduced matrix element is

S J, g
(T T)S8ell(JpT)S'y = 520,00 | 8 Ty Ji | [ To(Jy + Dy Tulds + 1)
2 1 1

4.2 Inelastic Excitations
4.2.1 Nuclear Rotational Model

Consider a deformed nucleus with deformation lendthsThe effect of these deformations can be ex-
pressed as a change in the radius at which we evaluate tlealgpitentials, the change depending on the
relative orientations of the radius vector to the intrinsieentation of the nucleus. Deformation lengths
are used to specify the these changes, rather than fractef@mationsg,, to remove a dependence
on the ‘average potential radiug;;. This is desirable because often the real and imaginarg pathe
potential have different radii, and it is not clear whichashte used. It also removes a dependence on
exactly how the ‘average radius’ of a potential is to be define
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WhenU (R) is the potential shape to be deformed, the coupling interaés

V(&R) = U(R - 6(R,¢)) (78)
where the ‘shift function’ has the multipole expansion
J(R) =D HYY(R) (79)
A£0

(R’ is the vectorR in the body-centred frame of coordinates defined pyTransforming to the space-
fixed frame of reference, and projecting onto the spheriaahionics, the multipole expansion becomes

V(£ R) = Yo VA(R) D Y (R) (80)
whereVy(R) = 1 [T U(r(R,cos))Y{(8,0) d(cos ) (81)
andr(R,u) = R—\/ZEP\(u)d) + e (82)
with € = S\ 062/ (4T Ry) (83)

The correctiore is designed ([45]) to ensure that the volume integral of teaopole potential/y(R) is
the same as that éf(R), and is correct to second order in thi } }.

When the{d,}} are small, the above multipole functions are simply the fiesivatives of thelU(R)
function:

Va(R) = -~ Y (84)

with the same shape for all multipolas> 0.

4.2.2 Coulomb Deformations

The deformations of the Coulomb potential can also be defiyetied,, but unfortunately an average
potential radius is again introduced. The dependence orelmddr average radii can be reduced by
defining the Coulomb deformations in terms of a reduced malement such as that of Brink and
Satchler [19], or that of Alder and Winther [20]. For the mmespurposes we adopt that of Alder and
Winther, as it is hermitian upon interchanging the forwand eseverse directions. We include, however,
a simple phase factor to keep it real-valued. The new defimmparameter is called/(E\) and has
units ofe.fm™. In terms of the Alder and Winther reduced matrix elemers it i

M(EX) = il ="HI=IE s (7| EXM|T) (85)

and is directly related to the observable electro-magngdigsition rate without any model-dependent
parameters entering (except a sign):

M(EX) = /(21 + 1)B(EAT — I'). (86)

A model dependent radius paramefer only enters in the relation to the deformation lengths of the
rotational model:

Z&\RNY ,
M(ENT — I') = 35%47]%0 =141 BT T T (IKNO|I'K) 87)
78
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for transitions from a state of spihto one of spin/’ in a rotational band of projectiof” in a nucleus of
chargeZ. Within K=0 bandsM (EX,0 — I) = M(EX, I — 0) have the same sign &s.

The only disadvantage of using reduced matrix elements @ag iparameters in this way is that the
transitions in a rotational band do not all have the sameixelements\M (EX, I — I’), even when the
deformation length is constant.

The radial form factors for Coulomb inelastic processes magimply derived from the multipole ex-
pansion ofr — r/|~1, giving

V§(R) = M(EN)

4 2 A 22+1 <
Te { R*/R, (R < R.) (©8)

22 +1 | 1/RM! (R > R,)

remembering that a factds R.* ! = 8\ R.” is already included in the matrix element of equation (87)
which appears in this form factor. This form factor is to bdtiplied by the angular momentum coupling
coefficients of the next section, and also by the charge abpipesing nucleus.

4.2.3 Angular Momentum Coupling Coefficients

The basic rotational coupling coefficient, with, given by equation (70), is
X1 (R) = (LI JIVAIL'T' J) (89)
The Coulomb form factor¥ (R) have coupling coefficients
X2 (R) = LL/(—1) ="~ F+EW(LL 11", \J)(LOL'0|A0) V§(R) (90)

whereas the nuclear form factovs (R) defined for a rotational band with projectidt have coupling
coefficients

X/ p(R) = LL(=1)~T"FEW(LL'II'; \J)(LOL'0|A0) Vi(R)
I'(I'KXN|IK). (91)
For projectile inelastic excitation, this coupling coeffict may be used directly as
(L) J, Jis JLIV AL Ty) T, T Jr) = 65, g0 85,00 Xiﬁp:L/JI,J(R) (92)
whereas for target excitations,
(LJp)J, Jos JT\V AL Tp) I T Jr) = 64,7 (1) =L T
X Z(zJQ + V)W (JpLJrJe; JJ2)W (J, L' Jp Jy; J' )X (R) (93)

LJy:LJ!
J2

4.3 Single Particle Excitations

When a nucleus consists of a single particle outside a doeestate of the particle can be disturbed by
the interaction with1l another nucleus, as the force of thiateus can act differentially on the particle
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and the core. IW..(R.) andV,(r’) are the interactions of the second nucleus with the core ariitie
respectively, then the excitation coupling from stg#8L’)\) to state|(¢L)A) is given by the single-
folding expression

Xopr (R) = (CL)A|Vee(Re) + Vp(r') — Uopt (R (C'L')A) (94)

whereU, (R) is the optical potential already defined for these chanriiss optical potential is sub-
tracted to avoid double counting of either the Coulomb omthelear potentials, rather than disabling the
potentials which have already been defined. This meansttbdirtonopole’ potentiaVy (R, ) (to be
constructed) will have no long-range Coulomb componerd,veiti not disturb the matching of the wave
functions to the asymptotic Coulomb functions. It also nsetrat if a nuclear well has already been
defined, the new monopole form factor will be simply the diffiece between this well and that desired
well calculated from the folding procedure.

If the potentialsV..(R.)and U, (R) contain only scalar components, then tReandr- dependent
Legendre multipole potentials can be formed as

+1
K(Rr) =5 / Vie(Re) + V(') — Uop(R)] Pre (u)du (95)
where

= the multipole moment,

u = #-Risthe cosine of the angle betweeandR,
= aR + br is the particle-core vector,
andR. = pR + gristhe core-nucleus vector.

The coupling form factor between states(r) andu,(r) is then

Rm An A A
X op/(R) = —Z / V'V (R, r)up (r)dr(—1) A KL L
I, K ¢V K L L
X (2K+1)W(€€LL,KA)< 0 0 0 0 0 o (96)

4.3.1 Projectile Single-Particle Mechanisms

If the projectile has the particle - core composition, then the coupling auigon is

VIL(R) = (LJp)J, T Jr| V(L' Tp) J, Jy; Jr) (97)
where the initial (primed) and final (unprimed) states are
T,
b1 (Epy7) =Y Aé,sj P’ (¢'s)§", Lp; JL) and ey, (€p,7) ZAZ;’JP‘ 03)4, Ip; Jp), (98)
sy’ lsj
respectively, and, is the (fixed) spin of the core. Then
VIT(R) = > GiQ2F +1)JJL2A + 1)W (Esdyp Ly jEYW (s JL1,; §'F)
FAIL,
jjel
< AL AT Y (LT R AT W (D0 TFS AT % Xy (R) (99)
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4.3.2 Target Single-Particle Mechanisms

If the targethas the particle - core composition, then the coupling autéon is
VL (R) = (LJp)J, I3 e V(L Jp) J, s ) (100)

where the initial (primed) and final (unprimed) states are

"I J!
Sa(Er) = D A () Ly J7) andey, (&, 7) = S AJLT | (6s)], I ), (101)
sy’ lsj

respectively, and; is the (fixed) spin of the core in the target. Then

Vin(R) = 3 AL A
Isjj'ee’
xS (2o + 1) Iy W (g drLy; JoJy) W(I'§ Jrly; JoJy)
Ja
L ¢ A L ¢ A
XY 8 Jp, s sq Jy 5 8a ¢ X0 (R) (102)
Asq J 5 Ja J 7T,

4.4 Particle Transfers
4.4.1 Finite Range Transfers

To calculate the coupling term that arises when a partidiaisferred, for example from a target bound
state to being bound in the projectile, we need to evaluatecederms of the form

R)dR' (103)

Sa(R) :/O (LIp) T, i Jr V(L' T) T T T F7E g g0 €

where the initial (primed) state has a composite targetiwitrnal coordinates;, = {&,r'} : ¢ FASE r') =
|(¢'s)j', Ji; J;) and the final (unprimed) state has a composite projectil internal coordinate§, =

{&po1} 05, (&m) = [(£s)], T Jp)-
TheV is the interaction potential, of which the prior form is

V = Vigj (1) + Use(Re) — Un (R) (104)
and the post form is

V = Vigjr (v') + Uee(Re) — Ua(R) (105)

whereVj(r) is the potential which bindgg(r), U,(R) are the optical potentials, arid..(R.) is the
‘core-core’ potential, here between thleand thet nuclei. TheV will be real, but thel/,, and U, will
typically have both real and imaginary components.

This source functioib,, (R) evaluates a non-local integral operator, as it operateseofunctionf,, (R’)
to produce a function oR. This section therefore derives the non-local kefrigl, (R, R') so that the
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source term, which initially involves a five dimensionaleigtal overr and R, may be calculated by
means of a one-dimensional integral ov&r

SalB) = [ Vo (R R fur (R)AR. (106)
0
Note that when the initial and final single-particle statesraal, then the kernel function is symmetric
Voo (R, R) = Vo o (R, R), (207)

whereas if the states are unbound and complex-valued, hiedetnel function is hermitian provided the
interaction potentiaV is real. If the particle states and the interaction potéatia complex, then both
the forward and reverse kernels must be each calculategendently.

When the potentiaV contains only scalar potentials, the kernel calculationtmreduced to the problem
of finding X2 ,.;, (R, R') such that, given

L oJg o
) AN A A A A p
(L), Jo JT V(L' T) T Jps o)y = Y (1) P JJGERLAS ¢ s
AF A F J
XW (Joj' Jr "5 JLYW (IsdypJ)y; jEYW (LLTF; AJy)(CL; AV 'L A), (108)

the integral operatoffL; A|V|¢'L’; A) has the kernel functioX?, ,,,(R, R'). Note that the” summa-
tion may be performed in an inner loop that does not evalletééernel function.

Now ther andr’ are linear combinations of the channel vectBRsandR’: r = aR + bR’ andr’ =
a'R + V'R’ where, whenp,(r) is the projectile bound state,

a=nw, b=-w, d=w, b=-yw, (109)
With v, = Ay /Awp s Ve = Awt/ A, andw = (1 — vp11) L . Whengy(r) is the target bound state
a=-yw, b=w, d=-wlb=nw, (110)

with v, = A.p/Awp v v = Api/Awe , andw = (1 — uput)*l . The ‘core-core’ vector is always
R.=r—-r=(d—a)R+ (¥t —->bR.

Thus the spherical harmonig$(t) andYy (') can be given in terms of the spherical harmonig$R )
andY,, (R’) by means of the Moshinsky [71] solid-harmonic expansioe @eo refs. [21] and [46]

Y (#) = VT ) c(l, n)wwnk(f{)m(fy)@ — nm — AnAém) (111)

n\
B 1 20+ 1
C(g’")_$2n+1 < 2n )

with ( ”; ) the binomial coefficient (Appendix A).

where
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We now perform the Legendre expansion

s (1) wpsj(r')
\% T;H T,g, 5 = zT:(QT—kl)qu,(R, R)Pr(u) (112)

where the Legendre polynomialy-(u) are functions ok, the cosine of the angle betweBrandR/,
by usingr = (a2R2 + b*R'* + 2abRR'v)"/2 (with ' analogously) in the numerical quadrature of the
integral

T+ ugsi(r) upsi(r')
a0 (R, R) = 3 /_ ) A% rfjﬂ T/g, 1~ Pr(u)du (113)

The quadrature methods used here, and the accuracy aftaieatiscussed in section 5.3.

Using the Legendre expansion, the radial kernel function

b 3 —-n n g n'
X2 p1/(R,R) = %Zc{én)c{f’n’)RR’(aR)é (bR (d’R)* ~™ (V' R)

nn’

xS aly(R,R) (2T + 1)(—~1)MTHAL G (¢ = n) (¢ — n')in' LI/
T

/ {—n n K 0—n' n K’ K L T K L' T
XZ(2K+1)(2K+1)< 0 o 0)( 0 0 o0 0 0 0 0 0 0

KK’
¢Q
xS 2Q + YW (ULILAQW(KLK'LTQ) [ o' K (—n (114)
Q ¢—n K' n

These formulae can also be used with= 1 to calculate the kernel functions?} ., (R, R') for the
wave function overlap operatdk;; = (¢;|¢;) needed in evaluating the non-orthogonality terms of
section 2.3.

One disadvantage of this method of calculating the two-dsienal radial kernelX?; .,/ (R, R') is
that in the process of transforming the solid harmonics afidr’ into those ofR andR/, there appears
summations containing high powers of the coefficients o’ andbd’ These products will become larger
than unity by several orders of magnitude, will the summaeadltas typically of the order of unity. This
means that the summations involve large cancellationsaarbe degree of cancellation gets worse for
large ¢ and¢’, the cancellation places a limit on the maximum vafue ¢’ of the transferred angular
momentum.

One way of circumventing this loss of accuracy is that prepgdsy Tamura and Udagawa [47], whereby
solid harmonics are avoided in favour of a suitable choicaxafs to render it practical to calculaie
dependent form factors directly. If theaxis is not (as usual) parallel to the incident momentum, but
set parallel tdR, and thex’ axis set in the plane determined RyandR’, then ther andr’ vectors are
also in this plane. The radial kernels may then be calculated sum ofn-dependent integrals over
cosf® = R - R/, as before the cosine of the angle betw&andR’. Although there are hence a larger
number of radial integrals to be performed, there are nelaepncellations between the separate terms,
and there is no limit on the size of the transferred angulamer@um.

A third method [22] of calculating the transfer form factéssthat involving expanding the initial and
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final channel wave functions in terms of spherical Bessettions:

N(L)
fa(R) = Z aa(Kn)RjL(KnR)' (115)

n=1

Using then the Fourier transform of the bound state wavetiome u,(r) and ux(r'), a transfer T-
matrix element may be written as a sum of a set of one-dimeakintegrals over a momentum variable.
Efficient codes [23] have been written for CCBA calculatiarigransfers induced by light ions (up to
masses- 10 to 15 amu).

This plane-wave expansion method has however severaimdisdjes when it comes to solving prob-
lems with coupled reaction channels. If transfers are todbeutated at each iteration of the coupled
equations, then the expansion (115) has to be recalculateaich step. Another difficulty is that the
method is not suited to heavy-ion induced transfers, asattye Idegree of absorption inside the nuclei
in these cases requires a large number of momentum bass Ktato be represented accurately. The
plane-wave expansion becomes uneconomical, and somdtimegtermination of the,, (X,,) coeffi-
cients becomes numerically ill-conditioned

We will see in section 5.3.1, however, that if the canceallativhich occurs in the first method is moni-
tored, and steps taken to keep it to a minimum, a workable [eesults which can produce accurate
results for L-transfers up to around 6.

4.4.2 Zero Range Transfers

When the projectile wave functions (r) are alls-states { = 0 and the interaction potential is of zero-
range(Vep(r) ~ Dod(r) ), then the form factoX?2, .., (R, R') of equation (114) can be simplified
to

I N (_1)[/75/ é/i]f// g/ L L/ l - g ,
Xorwp (B, R) = Dy 7 7= Lo o o Rué’sg’(R) —O0(aR+bR).  (116)

This can be made local by defining a new step &ize: —ah/b = v;h in the stripping channel’.

4.4.3 Local Energy Approximation

If the interaction potential is of small range, though natozeand the projectile still contains onky
states, then a first-order correction may be made to the dbowefactor. This correction will depend on
the rate of oscillation of the source wave functiﬁ(@ A Jé(RI) within a ‘finite-range effective radius’
p. The rate of oscillation is estimated from the local enemgyhie entrance and exit channels, and the
result [24] is to replacey;:(R) in the previous section by

(»)

20
ué’sj’(R) - ué’sj/(R) I+ p2 ;2 (Ua/(R) + Vf/sj’(R) - Ua(R) + 604) (117)

where theJ (R) are the optical potentials, withy:,;(r) the single-particle binding potential in the target.
Theug’) is the reduced mass of the particle in the projectile, @nils binding energy.
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At sub-Coulomb incident energies [25], the details of thelear potentials in equation (117) become
invisible, and as the longer-ranged Coulomb potentiale&lany charge conservation, the form factor
can be simplified to

(p)
2pe
Doug/sj/(R) — ué’sj’(R)DO 1+ p2 ';; oz‘| = U,glsj/(R)D (118)
where
2
D =D, [1 1 (pk;gg’)) } (119)

is the effective zero-range coupling constant for sub-Gmid transfers.

The parametersD, and D can be derived from the details of the projectile bound statg(r). The
zero-range constar®y may be defined as

Dy = \/E/OOO TV (r)ugss(r)dr. (120)

The parameteD, on the other hand, reflects the asymptotic strength of the inctionugss(r) as
r — 00, as it is the magnitude of this tail which is important in SDbulomb reactions:

2M((f) 1 De‘k&p)’"

SS —r—oo " 19  — 121
uo (T) h2 \/E ( )
It may be also found, using Schrodinger’s equation, froeithegral
% sinh( (»)
D=4 / W V(r)ugss(r)dr. (122)

From this equation we can see that as the range of the pdtbatiames smallerD approached),.
The ‘finite-range effective radiug of equation (119) is thus some measure of the mean radiusof th
potentialV (r).

5 Numerical Solutions

This section discusses the methods used to solve the cougaletion channels equations (30), when in
general there are both local couplm@§a ) and non-local kerneld/,../ (R, R.). Now a group

of m equations can be solved ‘exactly’ (subject only to radiatditisation errors) by finding [53] a set
of m linearly independent groups of solutions;,(R), and taking a linear combination of these which
satisfies the required boundary conditions. This methodlig gracticable, however, if there are not too
many equations (the numerical effort can riser&y, and if there are only local couplings. For in that
case the independent solutions can be found in a single alitaaeep’ ofm? radial functions. Non-
local couplings mean, unfortunately, that the source tetnaggiven radius depend on the wave functions
at other radii both larger and smaller, so that this ‘exa@thmd becomes impractical.

In many cases of interest in nuclear physics, however, thdaaal couplings are not too strong, and can
be treated as successive perturbations. They can then ledapgratively until further applications have
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progressively smaller efffects, and the solutions haverex@ed (to some preset criterion of accuracy).
Some failures of convergence can remedied by the use ofdgmtéximants.

When both local and non-local couplings are present, andoda couplings are too strong to allow

an iterative scheme to converge, a combination of the exatitarative schemes is possible. In this
approach, several channels can be ‘blocked’ together,rantetl as one unit during the iterations, while
solving the couplingsvithin the block by the exact method.

There are several other features of typical nuclear reac#culations which simplify the numerical
methods:

1. If the sum of the incoming projectile and target spins &ager than one, then solutions will often
be required for theameset of CRC equations, only with different boundary condisio

2. The diagonal potentials, (R, ) usually have a significant imaginary component for smiall and
hence damp the solution,(Ry) in this region. This enables lower radial cutoffs to be usad f
R, near zero, with little loss of accuracy.

3. The bound stateg,;;(r) used in transfer reactions decay exponentially outsidsulface region
of the nuclei. This means that the integrand in equation)(1d3the transfer kernels will often
decay exponentially both a8 — R’| increases, and as= cosfl = R - R/ decreases from unity.

5.1 Integration of the Radial Equations

If the non-local interaction¥, (R, R') in the CRC equations (30) are present, then it will always be
necessary to solve the coupled channels by iteration. \WeHdcal couplingsi/aF, « (R), however, we
have a choice whether to iterate, or to include them in thetes@utions of the close-coupling method.
A simple option is to allow a specifiable numbdeof channels to be coupled exactly, with the remainder
only being fed after one or more iterations. This would bdulséor example, if the channels for the low-
lying states of a highly-deformed target were included is tiiock of b channels, and if the remaining
channels (e.g. for transfers) were not fed by more than 2 e deyond this initial block. Restricting
these iterations to one is equivalent to solving a CCBA model

Whether the coupled equations are of the simpler form of mué30), or of the more complex form of
section 2.3, a particular’th iteration will require solving set ofn equations of the form

b
dd—};fi(R) _ Z R)+ Si(R)fori=1---b, (123)
2 =
nddd_szi(R) — Cu(R)fi(R) + Si(R) fori =b+1---m, (124)

where S;(R) is the source term constructed by means of the wave funcgf{ﬁfsl)(R) of previous
iterations :

Z Ci;(R)f"V(R) (125)

J=Jmin

wherejunin = b+ 1if i <bandjuyy, = 1if i > b.
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1 910 92,0 g gmo | inhomogeneous solns.
2 (not used) 8b+1,b+1 . gm.m | uncoupled regular solns.
3 g1,1 92,1
4 91,2 822 . coupled regular solutions
1 . " " (equationsl — b)

b+2 | g1p 92, . 8bb

Figure 2: Independent Solution Vectors: Layout of the ireent radial wave functions for solving
a system ofn equations, of whiclb are to coupled exactly. Each entry represents a vecterrafiial
points, and the entries in bold are those with a non-zeriainidlues for their outward radial integration.

These coupled differential equations can be solved, fatiguwthe method of ref. [53] by forming the
linearly independent solution sejs; (R), where thek’th solution consists of a set of all channels=
1---m) which is made independent of the other sets by having andisté starting value

1
(2L; + 1!

for the initial conditions in the radial integration of ediwoas (123). For this integration, the code
FRESCO uses the modified Numerov method, and other codesasutamura’s JUPITOR [26] have
used Euler's method to start with near the origit=Q), and then Stérmer’s 6-point method to continue.
A general discussion of numerical integration schemes/engin Melkanoff et al. [27], along with error
analyses of the different methods.

Gik(Rmin —h) =0, gi x(Rmin) = (K Runin) “ 05 1 (126)

The independent solutios ,(R) are required forn+1 values of. The solution vectors fot = 1---m

are solved starting with equation (126) but witlisource term in the equation (123): these will contribute
to the complementary solution of the homogeneous equalienalso need a particular solutigng(R)

of the inhomogeneous equation, solweith the source terms but witho non-zero values in equation
(126). These partial solutions may be conveniently laidamuin figure 5.1. If, however, it is known
that the wave functions of certain channels are not requifeiibr example, they are only fed in the last
iteration), then it is not necessary to store their comptsgnthe array, for their S-matrix elements can
still be calculated.

The solutionsf;(R) are the linear combination of thg ;. (R)
filR) =" argip(R) (127)
k=0

satisfying the boundary conditions of equation (32Rat R,,, and sayR = R,, — 5h. The coefficient
ag is always unity, to match the source terms correctly. Thed®imelements are a by-product of the
linear matching equations (32).

Note that the independent solutiogs, (R) for £ > 1 need only be calculated tfiest time this coupled
channels set is used. If they are stored as in figure 5.1, guéseiterations need only recalculate the
first row (IT=1) as the source terms vary. Furthermore, ifr¢hare multiple incoming channels for
fixed total spinJ; and parityw, then solutions after the first can also use ghg(R) already stored.
The first iteration for these subsequent incoming channillgnvact not require any radial integrations
whatsoever, merely finding a new set{af } from the new matching conditions, and recalculating the
sum (127) if the wave functions are required.
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Tolsma and Veltkamp [54] point out one difficulty with this thed, which is that if the coupling§’; ;

are strong foi # j, then the linear independence of the (R) will be reduced as? increases through

a classically forbidden region. This is because the compusnsith negative local kinetic energy will
generally consist of an exponentially growing part and groeentially decreasing part. The former is
responsible for the tendency to destroy the initially gatest linear independence of the solution vectors.
The longer the integration continues through a classidallgidden region, the stronger this tendency
will be; for instance, it will occur in scattering problem&rauclear physics with energies near or below
the Coulomb barrier. It will also occur if inelastic form tacs are used which are not approximately
derivatives of the diagonal potential, but which extend entbran usual into the interior of the nucleus
that is classically forbidden because of the centrifuga¢piials.

Tolsma et al. [54] propose a stabilization procedure to moorand if necessary re-orthogonalise the
solution vectors. If this were not done, there would be largecellations in the sum of equation (127),
resulting if severe in complete loss of accuracy of the Srmatements and the solution wave functions.

A simpler approach is to increase the starting radiys, at which the radial integrations begin. It is
advisable in any case for reasons of stability at small radhave a minimum radius proportional to
some angular momentumtypical of the coupled channels set:

Ruin > cLh (128)

for some constant in the region of 1 or 2, wheré is the radial step size. This constant could be
increased to avoid the loss of independence in the presebiiepn, but this is not always satisfactory, as
the absorptive effects of the optical potentials at intetiaie radii might thereby be lost. An alternative
remedy (adopted in ref.[34]) is to have a specifiable radigf€ R c),,in for the off-diagonal coupling
terms only. This allows the absorption in the diagonal pigéto be effective at all radii outsid®,;,

of equation (128), but does not allow any strong couplingnteto lead to loss of independence until
some larger radius which can be adjusted to keep the losscafaay to an acceptable level. It thus
should be a regular policy in a computer code to integrateduations (123) to a precision of at least 12
to 16 significant figures, to monitor the degree of canceltath equation (127), and to notify the user
should this approach within 2 or 3 powers of ten of the preaidimit of the computer. Note that it is
notnecessary for the coupling terr@$; () (etc) to beaccurateto full machine precision, only that they
should be consistentlgrecisewhen converted to that precision.

5.2 Convergence of the Iterative Method

The iterative method of solving the CRC equations (5, 30) eaihverge if the couplings are sufficiently
small. The procedure will however diverge if the the cougdirare too large, or if the system is too

near a resonance. On divergence, the successive waveofnmgﬁﬁl) will become larger and larger as
n increases, and not converge to any fixed limit. Unitarityl wfl course be violated as the S-matrix
elements will become much larger than unity.

5.2.1 Improving the Convergence Rate

There are several ways of dealing with this problem:
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. Solving some of the local couplings exactly by the methafdsection 5.1, and iterating only on
the non-local couplings and the remaining local couplings.

2. Solving all the channels simultaneously via a very lar ygesn of linear equations, with each
radial point in each channel as a separate unknown [28].

3. Find a separable expansion for the non-local kernelshaathey can be included exactly in the
coupled-channels solution [49].

4. Expand the wave functions with a range of basis states afo@ and (say) Gaussian [50] or
Airy [5] functions, and take the coefficients in this basistlas unknowns in a system of linear
eqguations.

5. Use Padé approximants to accelerate the convergenbe eéquene@é") of S-matrix elements
[51, 52].

6. Iterating the equations sequentially as in [51] and [E&her than all equations as a block.

7. The inwards-outwards method of refs. [29], [30] and [37].

For the range of heavy and light-ion reactions that we arsidering here, the methods (1) and (5) above
have been adopted.

The method (2) is not used because of the size of the matrixekalts. Initially, the matrix would be
sparse, with selected elements away from the diagonal neimgero because of the coupling potentials.
The kinetic energy operators occupy a band of width threagatbe diagonal. Although a Gaussian
elimination procedure would allow potentials of arbitragupling strength to be included, it will fill in
large regions of the matrix as the solution proceeds, asdiiakes the storage requirements prohibitive.

The separable expansion method (3), while useful for lightreactions, is unsatisfactory for heavy-ion

transfers. This is because if the masses of the initial arad finclei become large relative to the mass
of the transferred particle, the form factor for the transfeecomes more nearly local. As we approach
the no-recoil limit (which makes the form factors exactlgadf) a separable expansion of a nearly-local
kernel will require a large number of terms. In the limit ofag4l form factor, the separable expansion
will require the same number of terms as there are radiakgoin

The method (4) of expanding the wave functions in Gaussianklhave been used, provided the char-
acteristic widths in R-space of the basis states were chasatcordance with the wave numhbgy, in

the relevant channel. This requirement is less severe witlt-lon reactions, where the wave numbers
are typically< 1 fm~!. For heavy-ion reactions, however, the oscillation ratesnauch larger, and a
more sensible method is to expand in terms of Airy functidwas &re depend explicitly on the local wave
number over some radial region.

It is very useful to be able to iterate the coupled equationa ¢onventional manner, as then 1, 2 and
3 step DWBA results (etc.) can be recovered by stopping #ratibns short of full convergence. This

recovery of DWBA results is more difficult with sequentiadriation (6), but both that method and the
method of (7) would be definitely advantageous when, saytieg@ long rotational band by successive

application of a quadrupole coupling. Using Padé acctiterdnas the advantages that it need only be
employed if ordinary iterations are seen to diverge, antlitfransforms the previously-divergent results

with little new computational effort.
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5.2.2 Pad Approximants for Sequence Extrapolation

A given sequence, Sy, - - - of S-matrix elements that result from iterating the CRC ¢igna can be
regarded as the successive partial sums of the polynomial

FN) = S0+ (S1 = So)A + (S2 — S1)A* + - - (129)

evaluated ah=1. This polynomial will clearly convergence farsufficiently small, but will necessarily
diverge if the analytic continuation of th&\) function has any pole or singularities inside the circle
|A| > 1 in the complex\-plane. The problem that Padé approximants solve is théhdiihg a com-
putable approximation to the analytic continuation of fti&) function. This is accomplished by finding
a rational approximation

Cpo+pIA PN+ P\

= 130
L4+ @A+ @A+ + g\ (130)

P[n,m] ()‘)

which agrees with th¢g () function in the region where the latter does converge, @sddsy matching
the coefficients in the polynomial expansionfef, ,,,;(A) up to and including the coefficient ofttm,

There are many different ways [48] of evaluating the coeffits{p,,, ¢,, }, but for the present problem
we can use Wynn's-algorithm [31], which is a method of evaluating the uppeghtihalf of the Padé
table at\=1 directly in terms of the original sequenég, S1, - - .

5.2.3 Wynn's epsilon Algorithm

Initialising e(()j) = S, and e(j{ — 0, we form an array using the relatiafyj),; = e,(fll) + (e,(fﬂ) —
e(j))—l. Thus we can construct the table given the second column fierimitial sequence;. The table
then gives the transposed upper right half of the Padé, tagleiding the diagonal:

€5 = Plras)(1): (131)

Experience has shown that for typical sequences the mastaed®adé approximants are those near the
diagonal of the Padé table, and these are just the right-«ﬁ%?;n thee table.

When accelerating aector S-matrix element§;, with a component for each coupled channel, then it
is important to accelerate the vector as a whole. Wynn [3&]tpd out that this can be done using the
Samuelson inverse

x = (x-x*)"1x* (132)

wherex* is the complex conjugate of. Otherwise there will be problems when iterating (say) a-two
channel system with alternating backwards and forwardplewy because of zero divisors in the
algorithm.
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5.3 Transfer Form Factors
5.3.1 The Cancellation Problem

As discussed in section 4.4.1, the summations @ver equation (114) involve large cancellations, and
as the degree of cancellation gets worse for ldrged/’, this places a limit on the maximum valde- ¢/
of the transferred angular momentum.

Typically, however, the transfer form factors are only rezbtb be accurate to around 0.1 to 1%, so if
computer arithmetic is used which is accurate to 14 or 1éndaaiigits, then cancellations up to 12 or 13
orders of magnitude should in principle not result in caitgstic errors in the transfer rates. With careful
programming, this accuracy can be achieved. What is nageissa be careful that all quantities in the
equations (114, 113) above which depend on the Legendre @rdee calculated to the full computer
precision. It is not necessary, for example, for the chamele functionsf,,(R), the bound state wave
functionsuy,;;(r) or the quadrature of the integral (113) to be accurate tophetision (which in any
case would be impossible). It is only necessary that altlyemntities havexactly the same computer
precisionwhen the coefficients ovel (the qu,Z/(R, R)) are evaluated, and when the sums d¥e(in
equation 114) are performed. This will require principatyat the ‘radial framework’ that gives and

r’ in terms of R andR’ be accurate to full machine precision, as also the Racabr@gm®efficients in
equation (114). In fact, the channel wave functigp$R) and the bound state wave functioms;(r)
may be calculated with reduced precisions using shortempaten words and faster arithmetic should
these be available. It is also not necessary for the coeffgciand sums ovefl’ be consistent to full
accuracy for differenfz and R’ values, as the large cancellations only occur betweerreliftd” values
for each separat® and R’ combination.

Since the accuracy of the quadrature in the equation (11®)tisritical to the overall accuracy of the
transfers, calculations may be speeded up if we economigbeorange of the: variable and on the
number of intermediate steps required. Even in light iortctieas it is not necessary to integrateto
—1 (A to 180’) as was done in the code LOLA [72] for example. An efficientqedure to adopt is that
used in the DWBA code DAISY[55], where, for each succesgivealue, the code monitors the rate of
decay of the integrand @sincreases. For a given accuracy criterion, an estimateheantie made of an
adequate upper limit for th@ integration at the nex® value. Typically, the upper limits of decrease
monotonically ask increases from 0 to the upper limit,,. Because the integrand is largest #s10,
the accuracy of the angular integration for snéais improved by a change of variable framto « as in
ref.[55]:

1

0
4

(32° 4 1)z0max (133)
for 0 < x < 1. The quadrature over of equation (113) then becomes

1t Ugs (T) Ut s/ (TI) ; do
ng,(R7 R) = 5/0 \% Téj+1 r’g/'H Pr(u) sm(@)d—dm. (134)

i

The parameted,,., is adjusted for each successive valueRf according to the rate at which the
integrand is observed to decaytmcreases, as described earlier.
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5.3.2 Radial Grids

The methods used to calculate, store and use the non—IometoquuZZ/(R, R’) (equation 113) and
Voot (R, R') (equation 108) have to be efficient in a wide variety of reagj from light-ion reactions
such asHe(H,*HefH or '°0(*°Ne ?*Mg)'2C to heavy-ion reactions, such as nickel on tin one-nucleon
transfers. In the former cases, the radial form factrg/ (R, R") will be non-zero over large regions of
the R — R’ space, so (following ref [56]) interpolation procedureswdl prove effective.

However, when small masses are transferred between twer latglei the form factor is nearly local,
and only large around? ~ R’. If the whole (R, R’) array had to be calculated and stored in these
cases, modelling heavy-ion transfers would become inefficieven with interpolation methods. The
form factor now varies rapidly as a function & = R — R’ (especially for heavy ion reactions, as the
Jacobiarb? in equation (114) becomes large), and varies only slowl \#it(if R is constant), as this
variation follows the radial dependence of the bound stateeviunctions. The best procedure is thus
[56] to first change to the coordinate paiR and R, and then to use different interpolatory intervajs
andhp in the two directions respectively. Then, when nuclear madgcome large compared with the
mass of the transferred particles can become smaller, perhaps even smaller thathe basic radial
step size.

The method adopted in FRESCO is to let the user spégifgnd hr as multiples or submultiples @f.
The value ofh is very often always 3 to 5 times larger thanas this reflects the typical rate at which
bound state wave functions vary. If the bound state wavetifume have many internal nodes, then the
interpolation intervah iz cannot be so large (this is often the case witparticle bound states).

The hs, on the other hand, will be larger tharfor light-ion reactions (as described in [47]), but will be
comparable with or smaller thanfor few-nucleon transfers between heavy ions. The usersplscifies
the maximum and minimum values of the range) &f which again will be large & nuclear radii) for
light ions, and small ¢ 1 or 2 fm.) for heavy ion reactions. The accuracy of thesead®is checked
retrospectively by collecting statistics on the distribas of the functionsﬁ:g,(R, dR), averaging over
R. and all partial wave§’, ¢, and/’.

Whenhs or hg aremultiplesh, then (say) cubic splines in two dimensions can be used tanekthe
form factors for the integrals of equation (106). If, howevsg is asubmultipleh, as is the case in many
heavy-ion reactions, then a more efficient procedure isilpless

Suppose, say, we wish to evaluate the numerical integral

=2 Viwj)f(x)), (139)
J

where thef(z;) are the interpolated values of the functigr) between its stored values atz =
(i — 1)h. Let the interpolation method be linear:

flx) = Z A () fn (136)

for somez-dependent coefficients,, (z) from (say) fitting cubic splines over some range (most of the
a,, Will be zero except forn ~ i + 2). ThenZ can be evaluated directly in terms of tlig :

T = S V@)Y anlz)fm (137)
j m
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= S Vit (138)
where

Vi = ZV(:Uj)am(azj) (139)
j

is a new effective form factor This means that whignis a submultiple of, we do not need to store a
form factor at intervals ok, only at intervals ofh, if we use the ‘preemptive interpolation’ of equation
(139). This has the further advantage that as the no-ranutlis approached (as the mass of the trans-
ferred particle becomes a smaller fraction of the intengctiuclei), then the form facto@T’é,(R, OR)
andV .. (R,5R) need fewer grid points in th&R direction. Less arithmetic is needed to evaluate the
source functions of equation (106), which change from

éRmaX
So(R) = /5 Voo (R,6R) fur (R — SR)A(GR). (140)
Rmin
to
Salihr) = hY_ V. (ihr, jh) fo ((ing — j)h) whereng = hg/h (141)

J

even when the original kernel functions vary rapidlyy@changes in steps éf (with R constant).

Simultaneous Two-Nucleon Transfess similar ‘preemptive’ summation is possible when calting
the form factors for the simultaneous transfer of two nustelbetween states of the form of equation (50)
in the projectile and in the target. As mentioned in sectiah 8o-nucleon transfer can be viewed as
the transfer of a ‘structured particle’ with internal comates(?, (s1s2)S)j andp, the distance between
the two nucleons. A transfer is only possible if the initidafinal states have identical values for
these ‘internal coordinates’. The angular momentum quamumbers can be matched exactly, but
source terms can either be constructed for gaghlue and summed in equation (106), or the separate
p products can be summed as early as equation (113). Becausephrate values are only used in a
summation, it is most economical to use Gaussian quadratar®r a given accuracy this reduces by a
half the number of-ho; values at which the wave functions of equation (50) need todbeulated and
stored. If therho; are chosen to be the Gaussian quadrature points over sorsenctange, and ify;

are the corresponding weights, the equation (113) becomes

1 1 Ny
qi (R, R) =2 / r L VST w0 Vg (r, 1) Wy (' p)| Pr(u) . (142)

2J)1
Equation (114) remains unchanged, and this means that telearutransfers can be calculated effi-
ciently with little more computational work than that rexpd for single-particle transfers.
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A Notation and Phase Conventions

Spherical Harmonics

The phase convention used here is

2L+ 1 (L —m)!

I (Ltm) (—1)™e"™? P (cos 6)

Yi'(0,9) :\/

form >0, andY; ™ = (—1)™Y/™* to give negativen values.

Angular Momentum Coupling Coefficients

The notation(¢ym1¢amo| LM ) has been used for the Clebsch-Gordon coupling coefficiemtdapling
states/;m and/yms together to formL M. The

a c —1)ab=
(a ; 7)5 CU aabsle )

represents the Wigner 8symbol, and

T=+V2zx+ 1.
The 94 coupling coefficient is used in two forms related by
a b c o a b c
d e f p=c¢fgh | d e f
g h i g h 1

The binomial coefficient is
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B Coupled Channels Codes in Nuclear Physics

There is a natural progression of complexity in the codesgebnsidered here:

»

© N o O

. One-step (DWBA) codes Inelastic excitations Zero-rangesfers (ZR) No-recoil transfers (NR)

. Coupled channels (CC) codes with local form factors ktalaxcitations (CC) Zero-range trans-

fers (ZR-CC, sometimes included in CCBA) No-recoil transfiNR-CC, sometimes included in
CCBA)

. One-step (DWBA) codes for exact finite-range transfeERIDWBA)

Coupled channels Born approximation (CCBA): a couplddsehannels followed by a finite-
range transfer (sometimes called EFR-CCBA).

Two-step DWBA Zero-range transfers (2-step ZR-DWBA) idoeil transfers (2-step NR-DWBA)
One-step DWBA codes for exact finite-range transfers (BVRBA)
Two-step DWBA for exact finite-range transfers (2-stefREPWBA)

Coupled reaction channels (CRC), allowing finite-ramgadfers.

The following is a summary of the more widely known coupledrmhels codes (codes which can only
perform one-step DWBA calculations have been excluded).

PR R R R R R R R
© 0O N U~ WNPRERO

© N TR DR

Yoshida [57]: Inelastic CC with-function interactions

Buck, Stamp and Hodgson [53] and Satchler (see ref.[E3)astic CC
Tamura [1]: General purpose inelastic CC

Stamp [58]: ZR-CC

Rawitscher [59]: ZR-CC using iterated Green functions

Tamura and Low [56] and [47]: Saturn-Mars - NR-DWBA and EBR/BA
Ohmura et al. [46]: CRC for deuterons

Ascuitto et al. [61]: ZR-CCBA using source terms

Mackintosh [62]: ZR-CRC for deuterons and protons

Bang and Wollesen [60]: two-step ZR-DWBA.

. Toyama [64]: two-step ZR-DWBA

. Schaeffer and Bertsch [63]: two-step ZR-DWBA

. Rosel et al. [35], extended by Rawitscher [36]: AROSAG f6r Coulomb excitations
. Cotanch and Vincent [41]: CRC for deuterons

. Raynal [51] and [38]: General purpose inelastic CC andXR

. Kunz [65], and later Comfort [66]: CHUCK - General purpd3C (inelastic and ZR)
. Nagel and Koshel [43]: OUKID - EFR-CCBA for light ions

. Kawai [50]: CRC for deuterons

. Baltz [67]: QUICC - Inelastic CC for heavy ions
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20. Imanishi [68]: CRC fot2C+3C reactions
21. Tolsma [5] and [37]: PIECANSOL - Inelastic CC for heavnso

22. Toyama and lgarashi [69]: TWOSTP - 2-step ZR- and EFR-BWB light ions, and
Igarashi: TWOFNR/PTFF - 2-step EFR-DWBA for sequential aimdultaneous transfers of two
nucleons for light ion reactions.

23. Thompson [49]: CRC for deuterons

24. MacFarlane, Pieper and Rhoades-Brown [52]
PTOLEMY!/1 - Inelastic DWBA and EFR-DWBA for heavy and ligluris
PTOLEMY/2 - General purpose inelastic CC for heavy ions

25. Kunz : CHORK - ZR-CC, and NR-CC for heavy ions
26. Thompson [34]: FRESCO - General purpose CRC for lightreealy ions
27. Clarke [70]: a new ‘zero-angle’ approximation for CCténrange transfers (i.e. ‘ZA-CC’)

Note that it is sometimes difficult to put these developmanesdefinite chronological order.
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